| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax1rid | Structured version Visualization version GIF version | ||
| Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, derived from ZF set theory. Weakened from the original axiom in the form of statement in mulrid 11179, based on ideas by Eric Schmidt. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 11145. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax1rid | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-r 11085 | . 2 ⊢ ℝ = (R × {0R}) | |
| 2 | oveq1 7397 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (〈𝑥, 𝑦〉 · 1) = (𝐴 · 1)) | |
| 3 | id 22 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → 〈𝑥, 𝑦〉 = 𝐴) | |
| 4 | 2, 3 | eqeq12d 2746 | . 2 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → ((〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉 ↔ (𝐴 · 1) = 𝐴)) |
| 5 | elsni 4609 | . . 3 ⊢ (𝑦 ∈ {0R} → 𝑦 = 0R) | |
| 6 | df-1 11083 | . . . . . . 7 ⊢ 1 = 〈1R, 0R〉 | |
| 7 | 6 | oveq2i 7401 | . . . . . 6 ⊢ (〈𝑥, 0R〉 · 1) = (〈𝑥, 0R〉 · 〈1R, 0R〉) |
| 8 | 1sr 11041 | . . . . . . . 8 ⊢ 1R ∈ R | |
| 9 | mulresr 11099 | . . . . . . . 8 ⊢ ((𝑥 ∈ R ∧ 1R ∈ R) → (〈𝑥, 0R〉 · 〈1R, 0R〉) = 〈(𝑥 ·R 1R), 0R〉) | |
| 10 | 8, 9 | mpan2 691 | . . . . . . 7 ⊢ (𝑥 ∈ R → (〈𝑥, 0R〉 · 〈1R, 0R〉) = 〈(𝑥 ·R 1R), 0R〉) |
| 11 | 1idsr 11058 | . . . . . . . 8 ⊢ (𝑥 ∈ R → (𝑥 ·R 1R) = 𝑥) | |
| 12 | 11 | opeq1d 4846 | . . . . . . 7 ⊢ (𝑥 ∈ R → 〈(𝑥 ·R 1R), 0R〉 = 〈𝑥, 0R〉) |
| 13 | 10, 12 | eqtrd 2765 | . . . . . 6 ⊢ (𝑥 ∈ R → (〈𝑥, 0R〉 · 〈1R, 0R〉) = 〈𝑥, 0R〉) |
| 14 | 7, 13 | eqtrid 2777 | . . . . 5 ⊢ (𝑥 ∈ R → (〈𝑥, 0R〉 · 1) = 〈𝑥, 0R〉) |
| 15 | opeq2 4841 | . . . . . . 7 ⊢ (𝑦 = 0R → 〈𝑥, 𝑦〉 = 〈𝑥, 0R〉) | |
| 16 | 15 | oveq1d 7405 | . . . . . 6 ⊢ (𝑦 = 0R → (〈𝑥, 𝑦〉 · 1) = (〈𝑥, 0R〉 · 1)) |
| 17 | 16, 15 | eqeq12d 2746 | . . . . 5 ⊢ (𝑦 = 0R → ((〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉 ↔ (〈𝑥, 0R〉 · 1) = 〈𝑥, 0R〉)) |
| 18 | 14, 17 | imbitrrid 246 | . . . 4 ⊢ (𝑦 = 0R → (𝑥 ∈ R → (〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉)) |
| 19 | 18 | impcom 407 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 = 0R) → (〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉) |
| 20 | 5, 19 | sylan2 593 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ {0R}) → (〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉) |
| 21 | 1, 4, 20 | optocl 5736 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4592 〈cop 4598 (class class class)co 7390 Rcnr 10825 0Rc0r 10826 1Rc1r 10827 ·R cmr 10830 ℝcr 11074 1c1 11076 · cmul 11080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-ec 8676 df-qs 8680 df-ni 10832 df-pli 10833 df-mi 10834 df-lti 10835 df-plpq 10868 df-mpq 10869 df-ltpq 10870 df-enq 10871 df-nq 10872 df-erq 10873 df-plq 10874 df-mq 10875 df-1nq 10876 df-rq 10877 df-ltnq 10878 df-np 10941 df-1p 10942 df-plp 10943 df-mp 10944 df-ltp 10945 df-enr 11015 df-nr 11016 df-plr 11017 df-mr 11018 df-0r 11020 df-1r 11021 df-m1r 11022 df-c 11081 df-1 11083 df-r 11085 df-mul 11087 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |