![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax1rid | Structured version Visualization version GIF version |
Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, derived from ZF set theory. Weakened from the original axiom in the form of statement in mulrid 11208, based on ideas by Eric Schmidt. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 11175. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax1rid | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-r 11115 | . 2 ⊢ ℝ = (R × {0R}) | |
2 | oveq1 7408 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (〈𝑥, 𝑦〉 · 1) = (𝐴 · 1)) | |
3 | id 22 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → 〈𝑥, 𝑦〉 = 𝐴) | |
4 | 2, 3 | eqeq12d 2740 | . 2 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → ((〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉 ↔ (𝐴 · 1) = 𝐴)) |
5 | elsni 4637 | . . 3 ⊢ (𝑦 ∈ {0R} → 𝑦 = 0R) | |
6 | df-1 11113 | . . . . . . 7 ⊢ 1 = 〈1R, 0R〉 | |
7 | 6 | oveq2i 7412 | . . . . . 6 ⊢ (〈𝑥, 0R〉 · 1) = (〈𝑥, 0R〉 · 〈1R, 0R〉) |
8 | 1sr 11071 | . . . . . . . 8 ⊢ 1R ∈ R | |
9 | mulresr 11129 | . . . . . . . 8 ⊢ ((𝑥 ∈ R ∧ 1R ∈ R) → (〈𝑥, 0R〉 · 〈1R, 0R〉) = 〈(𝑥 ·R 1R), 0R〉) | |
10 | 8, 9 | mpan2 688 | . . . . . . 7 ⊢ (𝑥 ∈ R → (〈𝑥, 0R〉 · 〈1R, 0R〉) = 〈(𝑥 ·R 1R), 0R〉) |
11 | 1idsr 11088 | . . . . . . . 8 ⊢ (𝑥 ∈ R → (𝑥 ·R 1R) = 𝑥) | |
12 | 11 | opeq1d 4871 | . . . . . . 7 ⊢ (𝑥 ∈ R → 〈(𝑥 ·R 1R), 0R〉 = 〈𝑥, 0R〉) |
13 | 10, 12 | eqtrd 2764 | . . . . . 6 ⊢ (𝑥 ∈ R → (〈𝑥, 0R〉 · 〈1R, 0R〉) = 〈𝑥, 0R〉) |
14 | 7, 13 | eqtrid 2776 | . . . . 5 ⊢ (𝑥 ∈ R → (〈𝑥, 0R〉 · 1) = 〈𝑥, 0R〉) |
15 | opeq2 4866 | . . . . . . 7 ⊢ (𝑦 = 0R → 〈𝑥, 𝑦〉 = 〈𝑥, 0R〉) | |
16 | 15 | oveq1d 7416 | . . . . . 6 ⊢ (𝑦 = 0R → (〈𝑥, 𝑦〉 · 1) = (〈𝑥, 0R〉 · 1)) |
17 | 16, 15 | eqeq12d 2740 | . . . . 5 ⊢ (𝑦 = 0R → ((〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉 ↔ (〈𝑥, 0R〉 · 1) = 〈𝑥, 0R〉)) |
18 | 14, 17 | imbitrrid 245 | . . . 4 ⊢ (𝑦 = 0R → (𝑥 ∈ R → (〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉)) |
19 | 18 | impcom 407 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 = 0R) → (〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉) |
20 | 5, 19 | sylan2 592 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ {0R}) → (〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉) |
21 | 1, 4, 20 | optocl 5760 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {csn 4620 〈cop 4626 (class class class)co 7401 Rcnr 10855 0Rc0r 10856 1Rc1r 10857 ·R cmr 10860 ℝcr 11104 1c1 11106 · cmul 11110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9631 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-oadd 8465 df-omul 8466 df-er 8698 df-ec 8700 df-qs 8704 df-ni 10862 df-pli 10863 df-mi 10864 df-lti 10865 df-plpq 10898 df-mpq 10899 df-ltpq 10900 df-enq 10901 df-nq 10902 df-erq 10903 df-plq 10904 df-mq 10905 df-1nq 10906 df-rq 10907 df-ltnq 10908 df-np 10971 df-1p 10972 df-plp 10973 df-mp 10974 df-ltp 10975 df-enr 11045 df-nr 11046 df-plr 11047 df-mr 11048 df-0r 11050 df-1r 11051 df-m1r 11052 df-c 11111 df-1 11113 df-r 11115 df-mul 11117 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |