MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax1rid Structured version   Visualization version   GIF version

Theorem ax1rid 10848
Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, derived from ZF set theory. Weakened from the original axiom in the form of statement in mulid1 10904, based on ideas by Eric Schmidt. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 10872. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ax1rid (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)

Proof of Theorem ax1rid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-r 10812 . 2 ℝ = (R × {0R})
2 oveq1 7262 . . 3 (⟨𝑥, 𝑦⟩ = 𝐴 → (⟨𝑥, 𝑦⟩ · 1) = (𝐴 · 1))
3 id 22 . . 3 (⟨𝑥, 𝑦⟩ = 𝐴 → ⟨𝑥, 𝑦⟩ = 𝐴)
42, 3eqeq12d 2754 . 2 (⟨𝑥, 𝑦⟩ = 𝐴 → ((⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩ ↔ (𝐴 · 1) = 𝐴))
5 elsni 4575 . . 3 (𝑦 ∈ {0R} → 𝑦 = 0R)
6 df-1 10810 . . . . . . 7 1 = ⟨1R, 0R
76oveq2i 7266 . . . . . 6 (⟨𝑥, 0R⟩ · 1) = (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩)
8 1sr 10768 . . . . . . . 8 1RR
9 mulresr 10826 . . . . . . . 8 ((𝑥R ∧ 1RR) → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨(𝑥 ·R 1R), 0R⟩)
108, 9mpan2 687 . . . . . . 7 (𝑥R → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨(𝑥 ·R 1R), 0R⟩)
11 1idsr 10785 . . . . . . . 8 (𝑥R → (𝑥 ·R 1R) = 𝑥)
1211opeq1d 4807 . . . . . . 7 (𝑥R → ⟨(𝑥 ·R 1R), 0R⟩ = ⟨𝑥, 0R⟩)
1310, 12eqtrd 2778 . . . . . 6 (𝑥R → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨𝑥, 0R⟩)
147, 13eqtrid 2790 . . . . 5 (𝑥R → (⟨𝑥, 0R⟩ · 1) = ⟨𝑥, 0R⟩)
15 opeq2 4802 . . . . . . 7 (𝑦 = 0R → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 0R⟩)
1615oveq1d 7270 . . . . . 6 (𝑦 = 0R → (⟨𝑥, 𝑦⟩ · 1) = (⟨𝑥, 0R⟩ · 1))
1716, 15eqeq12d 2754 . . . . 5 (𝑦 = 0R → ((⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩ ↔ (⟨𝑥, 0R⟩ · 1) = ⟨𝑥, 0R⟩))
1814, 17syl5ibr 245 . . . 4 (𝑦 = 0R → (𝑥R → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩))
1918impcom 407 . . 3 ((𝑥R𝑦 = 0R) → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩)
205, 19sylan2 592 . 2 ((𝑥R𝑦 ∈ {0R}) → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩)
211, 4, 20optocl 5671 1 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {csn 4558  cop 4564  (class class class)co 7255  Rcnr 10552  0Rc0r 10553  1Rc1r 10554   ·R cmr 10557  cr 10801  1c1 10803   · cmul 10807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ec 8458  df-qs 8462  df-ni 10559  df-pli 10560  df-mi 10561  df-lti 10562  df-plpq 10595  df-mpq 10596  df-ltpq 10597  df-enq 10598  df-nq 10599  df-erq 10600  df-plq 10601  df-mq 10602  df-1nq 10603  df-rq 10604  df-ltnq 10605  df-np 10668  df-1p 10669  df-plp 10670  df-mp 10671  df-ltp 10672  df-enr 10742  df-nr 10743  df-plr 10744  df-mr 10745  df-0r 10747  df-1r 10748  df-m1r 10749  df-c 10808  df-1 10810  df-r 10812  df-mul 10814
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator