![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax1rid | Structured version Visualization version GIF version |
Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, derived from ZF set theory. Weakened from the original axiom in the form of statement in mulrid 11212, based on ideas by Eric Schmidt. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 11180. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax1rid | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-r 11120 | . 2 ⊢ ℝ = (R × {0R}) | |
2 | oveq1 7416 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ = 𝐴 → (⟨𝑥, 𝑦⟩ · 1) = (𝐴 · 1)) | |
3 | id 22 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ = 𝐴 → ⟨𝑥, 𝑦⟩ = 𝐴) | |
4 | 2, 3 | eqeq12d 2749 | . 2 ⊢ (⟨𝑥, 𝑦⟩ = 𝐴 → ((⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩ ↔ (𝐴 · 1) = 𝐴)) |
5 | elsni 4646 | . . 3 ⊢ (𝑦 ∈ {0R} → 𝑦 = 0R) | |
6 | df-1 11118 | . . . . . . 7 ⊢ 1 = ⟨1R, 0R⟩ | |
7 | 6 | oveq2i 7420 | . . . . . 6 ⊢ (⟨𝑥, 0R⟩ · 1) = (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) |
8 | 1sr 11076 | . . . . . . . 8 ⊢ 1R ∈ R | |
9 | mulresr 11134 | . . . . . . . 8 ⊢ ((𝑥 ∈ R ∧ 1R ∈ R) → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨(𝑥 ·R 1R), 0R⟩) | |
10 | 8, 9 | mpan2 690 | . . . . . . 7 ⊢ (𝑥 ∈ R → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨(𝑥 ·R 1R), 0R⟩) |
11 | 1idsr 11093 | . . . . . . . 8 ⊢ (𝑥 ∈ R → (𝑥 ·R 1R) = 𝑥) | |
12 | 11 | opeq1d 4880 | . . . . . . 7 ⊢ (𝑥 ∈ R → ⟨(𝑥 ·R 1R), 0R⟩ = ⟨𝑥, 0R⟩) |
13 | 10, 12 | eqtrd 2773 | . . . . . 6 ⊢ (𝑥 ∈ R → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨𝑥, 0R⟩) |
14 | 7, 13 | eqtrid 2785 | . . . . 5 ⊢ (𝑥 ∈ R → (⟨𝑥, 0R⟩ · 1) = ⟨𝑥, 0R⟩) |
15 | opeq2 4875 | . . . . . . 7 ⊢ (𝑦 = 0R → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 0R⟩) | |
16 | 15 | oveq1d 7424 | . . . . . 6 ⊢ (𝑦 = 0R → (⟨𝑥, 𝑦⟩ · 1) = (⟨𝑥, 0R⟩ · 1)) |
17 | 16, 15 | eqeq12d 2749 | . . . . 5 ⊢ (𝑦 = 0R → ((⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩ ↔ (⟨𝑥, 0R⟩ · 1) = ⟨𝑥, 0R⟩)) |
18 | 14, 17 | imbitrrid 245 | . . . 4 ⊢ (𝑦 = 0R → (𝑥 ∈ R → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩)) |
19 | 18 | impcom 409 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 = 0R) → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩) |
20 | 5, 19 | sylan2 594 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ {0R}) → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩) |
21 | 1, 4, 20 | optocl 5771 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {csn 4629 ⟨cop 4635 (class class class)co 7409 Rcnr 10860 0Rc0r 10861 1Rc1r 10862 ·R cmr 10865 ℝcr 11109 1c1 11111 · cmul 11115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-omul 8471 df-er 8703 df-ec 8705 df-qs 8709 df-ni 10867 df-pli 10868 df-mi 10869 df-lti 10870 df-plpq 10903 df-mpq 10904 df-ltpq 10905 df-enq 10906 df-nq 10907 df-erq 10908 df-plq 10909 df-mq 10910 df-1nq 10911 df-rq 10912 df-ltnq 10913 df-np 10976 df-1p 10977 df-plp 10978 df-mp 10979 df-ltp 10980 df-enr 11050 df-nr 11051 df-plr 11052 df-mr 11053 df-0r 11055 df-1r 11056 df-m1r 11057 df-c 11116 df-1 11118 df-r 11120 df-mul 11122 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |