| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax1rid | Structured version Visualization version GIF version | ||
| Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, derived from ZF set theory. Weakened from the original axiom in the form of statement in mulrid 11233, based on ideas by Eric Schmidt. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 11199. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax1rid | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-r 11139 | . 2 ⊢ ℝ = (R × {0R}) | |
| 2 | oveq1 7412 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (〈𝑥, 𝑦〉 · 1) = (𝐴 · 1)) | |
| 3 | id 22 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → 〈𝑥, 𝑦〉 = 𝐴) | |
| 4 | 2, 3 | eqeq12d 2751 | . 2 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → ((〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉 ↔ (𝐴 · 1) = 𝐴)) |
| 5 | elsni 4618 | . . 3 ⊢ (𝑦 ∈ {0R} → 𝑦 = 0R) | |
| 6 | df-1 11137 | . . . . . . 7 ⊢ 1 = 〈1R, 0R〉 | |
| 7 | 6 | oveq2i 7416 | . . . . . 6 ⊢ (〈𝑥, 0R〉 · 1) = (〈𝑥, 0R〉 · 〈1R, 0R〉) |
| 8 | 1sr 11095 | . . . . . . . 8 ⊢ 1R ∈ R | |
| 9 | mulresr 11153 | . . . . . . . 8 ⊢ ((𝑥 ∈ R ∧ 1R ∈ R) → (〈𝑥, 0R〉 · 〈1R, 0R〉) = 〈(𝑥 ·R 1R), 0R〉) | |
| 10 | 8, 9 | mpan2 691 | . . . . . . 7 ⊢ (𝑥 ∈ R → (〈𝑥, 0R〉 · 〈1R, 0R〉) = 〈(𝑥 ·R 1R), 0R〉) |
| 11 | 1idsr 11112 | . . . . . . . 8 ⊢ (𝑥 ∈ R → (𝑥 ·R 1R) = 𝑥) | |
| 12 | 11 | opeq1d 4855 | . . . . . . 7 ⊢ (𝑥 ∈ R → 〈(𝑥 ·R 1R), 0R〉 = 〈𝑥, 0R〉) |
| 13 | 10, 12 | eqtrd 2770 | . . . . . 6 ⊢ (𝑥 ∈ R → (〈𝑥, 0R〉 · 〈1R, 0R〉) = 〈𝑥, 0R〉) |
| 14 | 7, 13 | eqtrid 2782 | . . . . 5 ⊢ (𝑥 ∈ R → (〈𝑥, 0R〉 · 1) = 〈𝑥, 0R〉) |
| 15 | opeq2 4850 | . . . . . . 7 ⊢ (𝑦 = 0R → 〈𝑥, 𝑦〉 = 〈𝑥, 0R〉) | |
| 16 | 15 | oveq1d 7420 | . . . . . 6 ⊢ (𝑦 = 0R → (〈𝑥, 𝑦〉 · 1) = (〈𝑥, 0R〉 · 1)) |
| 17 | 16, 15 | eqeq12d 2751 | . . . . 5 ⊢ (𝑦 = 0R → ((〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉 ↔ (〈𝑥, 0R〉 · 1) = 〈𝑥, 0R〉)) |
| 18 | 14, 17 | imbitrrid 246 | . . . 4 ⊢ (𝑦 = 0R → (𝑥 ∈ R → (〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉)) |
| 19 | 18 | impcom 407 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 = 0R) → (〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉) |
| 20 | 5, 19 | sylan2 593 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ {0R}) → (〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉) |
| 21 | 1, 4, 20 | optocl 5749 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {csn 4601 〈cop 4607 (class class class)co 7405 Rcnr 10879 0Rc0r 10880 1Rc1r 10881 ·R cmr 10884 ℝcr 11128 1c1 11130 · cmul 11134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-omul 8485 df-er 8719 df-ec 8721 df-qs 8725 df-ni 10886 df-pli 10887 df-mi 10888 df-lti 10889 df-plpq 10922 df-mpq 10923 df-ltpq 10924 df-enq 10925 df-nq 10926 df-erq 10927 df-plq 10928 df-mq 10929 df-1nq 10930 df-rq 10931 df-ltnq 10932 df-np 10995 df-1p 10996 df-plp 10997 df-mp 10998 df-ltp 10999 df-enr 11069 df-nr 11070 df-plr 11071 df-mr 11072 df-0r 11074 df-1r 11075 df-m1r 11076 df-c 11135 df-1 11137 df-r 11139 df-mul 11141 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |