![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax1rid | Structured version Visualization version GIF version |
Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, derived from ZF set theory. Weakened from the original axiom in the form of statement in mulid1 11160, based on ideas by Eric Schmidt. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 11128. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax1rid | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-r 11068 | . 2 ⊢ ℝ = (R × {0R}) | |
2 | oveq1 7369 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ = 𝐴 → (⟨𝑥, 𝑦⟩ · 1) = (𝐴 · 1)) | |
3 | id 22 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ = 𝐴 → ⟨𝑥, 𝑦⟩ = 𝐴) | |
4 | 2, 3 | eqeq12d 2753 | . 2 ⊢ (⟨𝑥, 𝑦⟩ = 𝐴 → ((⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩ ↔ (𝐴 · 1) = 𝐴)) |
5 | elsni 4608 | . . 3 ⊢ (𝑦 ∈ {0R} → 𝑦 = 0R) | |
6 | df-1 11066 | . . . . . . 7 ⊢ 1 = ⟨1R, 0R⟩ | |
7 | 6 | oveq2i 7373 | . . . . . 6 ⊢ (⟨𝑥, 0R⟩ · 1) = (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) |
8 | 1sr 11024 | . . . . . . . 8 ⊢ 1R ∈ R | |
9 | mulresr 11082 | . . . . . . . 8 ⊢ ((𝑥 ∈ R ∧ 1R ∈ R) → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨(𝑥 ·R 1R), 0R⟩) | |
10 | 8, 9 | mpan2 690 | . . . . . . 7 ⊢ (𝑥 ∈ R → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨(𝑥 ·R 1R), 0R⟩) |
11 | 1idsr 11041 | . . . . . . . 8 ⊢ (𝑥 ∈ R → (𝑥 ·R 1R) = 𝑥) | |
12 | 11 | opeq1d 4841 | . . . . . . 7 ⊢ (𝑥 ∈ R → ⟨(𝑥 ·R 1R), 0R⟩ = ⟨𝑥, 0R⟩) |
13 | 10, 12 | eqtrd 2777 | . . . . . 6 ⊢ (𝑥 ∈ R → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨𝑥, 0R⟩) |
14 | 7, 13 | eqtrid 2789 | . . . . 5 ⊢ (𝑥 ∈ R → (⟨𝑥, 0R⟩ · 1) = ⟨𝑥, 0R⟩) |
15 | opeq2 4836 | . . . . . . 7 ⊢ (𝑦 = 0R → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 0R⟩) | |
16 | 15 | oveq1d 7377 | . . . . . 6 ⊢ (𝑦 = 0R → (⟨𝑥, 𝑦⟩ · 1) = (⟨𝑥, 0R⟩ · 1)) |
17 | 16, 15 | eqeq12d 2753 | . . . . 5 ⊢ (𝑦 = 0R → ((⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩ ↔ (⟨𝑥, 0R⟩ · 1) = ⟨𝑥, 0R⟩)) |
18 | 14, 17 | syl5ibr 246 | . . . 4 ⊢ (𝑦 = 0R → (𝑥 ∈ R → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩)) |
19 | 18 | impcom 409 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 = 0R) → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩) |
20 | 5, 19 | sylan2 594 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ {0R}) → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩) |
21 | 1, 4, 20 | optocl 5731 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {csn 4591 ⟨cop 4597 (class class class)co 7362 Rcnr 10808 0Rc0r 10809 1Rc1r 10810 ·R cmr 10813 ℝcr 11057 1c1 11059 · cmul 11063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-inf2 9584 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-oadd 8421 df-omul 8422 df-er 8655 df-ec 8657 df-qs 8661 df-ni 10815 df-pli 10816 df-mi 10817 df-lti 10818 df-plpq 10851 df-mpq 10852 df-ltpq 10853 df-enq 10854 df-nq 10855 df-erq 10856 df-plq 10857 df-mq 10858 df-1nq 10859 df-rq 10860 df-ltnq 10861 df-np 10924 df-1p 10925 df-plp 10926 df-mp 10927 df-ltp 10928 df-enr 10998 df-nr 10999 df-plr 11000 df-mr 11001 df-0r 11003 df-1r 11004 df-m1r 11005 df-c 11064 df-1 11066 df-r 11068 df-mul 11070 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |