| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax1rid | Structured version Visualization version GIF version | ||
| Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, derived from ZF set theory. Weakened from the original axiom in the form of statement in mulrid 11107, based on ideas by Eric Schmidt. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 11073. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax1rid | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-r 11013 | . 2 ⊢ ℝ = (R × {0R}) | |
| 2 | oveq1 7353 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (〈𝑥, 𝑦〉 · 1) = (𝐴 · 1)) | |
| 3 | id 22 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → 〈𝑥, 𝑦〉 = 𝐴) | |
| 4 | 2, 3 | eqeq12d 2747 | . 2 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → ((〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉 ↔ (𝐴 · 1) = 𝐴)) |
| 5 | elsni 4593 | . . 3 ⊢ (𝑦 ∈ {0R} → 𝑦 = 0R) | |
| 6 | df-1 11011 | . . . . . . 7 ⊢ 1 = 〈1R, 0R〉 | |
| 7 | 6 | oveq2i 7357 | . . . . . 6 ⊢ (〈𝑥, 0R〉 · 1) = (〈𝑥, 0R〉 · 〈1R, 0R〉) |
| 8 | 1sr 10969 | . . . . . . . 8 ⊢ 1R ∈ R | |
| 9 | mulresr 11027 | . . . . . . . 8 ⊢ ((𝑥 ∈ R ∧ 1R ∈ R) → (〈𝑥, 0R〉 · 〈1R, 0R〉) = 〈(𝑥 ·R 1R), 0R〉) | |
| 10 | 8, 9 | mpan2 691 | . . . . . . 7 ⊢ (𝑥 ∈ R → (〈𝑥, 0R〉 · 〈1R, 0R〉) = 〈(𝑥 ·R 1R), 0R〉) |
| 11 | 1idsr 10986 | . . . . . . . 8 ⊢ (𝑥 ∈ R → (𝑥 ·R 1R) = 𝑥) | |
| 12 | 11 | opeq1d 4831 | . . . . . . 7 ⊢ (𝑥 ∈ R → 〈(𝑥 ·R 1R), 0R〉 = 〈𝑥, 0R〉) |
| 13 | 10, 12 | eqtrd 2766 | . . . . . 6 ⊢ (𝑥 ∈ R → (〈𝑥, 0R〉 · 〈1R, 0R〉) = 〈𝑥, 0R〉) |
| 14 | 7, 13 | eqtrid 2778 | . . . . 5 ⊢ (𝑥 ∈ R → (〈𝑥, 0R〉 · 1) = 〈𝑥, 0R〉) |
| 15 | opeq2 4826 | . . . . . . 7 ⊢ (𝑦 = 0R → 〈𝑥, 𝑦〉 = 〈𝑥, 0R〉) | |
| 16 | 15 | oveq1d 7361 | . . . . . 6 ⊢ (𝑦 = 0R → (〈𝑥, 𝑦〉 · 1) = (〈𝑥, 0R〉 · 1)) |
| 17 | 16, 15 | eqeq12d 2747 | . . . . 5 ⊢ (𝑦 = 0R → ((〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉 ↔ (〈𝑥, 0R〉 · 1) = 〈𝑥, 0R〉)) |
| 18 | 14, 17 | imbitrrid 246 | . . . 4 ⊢ (𝑦 = 0R → (𝑥 ∈ R → (〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉)) |
| 19 | 18 | impcom 407 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 = 0R) → (〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉) |
| 20 | 5, 19 | sylan2 593 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ {0R}) → (〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉) |
| 21 | 1, 4, 20 | optocl 5710 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4576 〈cop 4582 (class class class)co 7346 Rcnr 10753 0Rc0r 10754 1Rc1r 10755 ·R cmr 10758 ℝcr 11002 1c1 11004 · cmul 11008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-ec 8624 df-qs 8628 df-ni 10760 df-pli 10761 df-mi 10762 df-lti 10763 df-plpq 10796 df-mpq 10797 df-ltpq 10798 df-enq 10799 df-nq 10800 df-erq 10801 df-plq 10802 df-mq 10803 df-1nq 10804 df-rq 10805 df-ltnq 10806 df-np 10869 df-1p 10870 df-plp 10871 df-mp 10872 df-ltp 10873 df-enr 10943 df-nr 10944 df-plr 10945 df-mr 10946 df-0r 10948 df-1r 10949 df-m1r 10950 df-c 11009 df-1 11011 df-r 11013 df-mul 11015 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |