MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax1rid Structured version   Visualization version   GIF version

Theorem ax1rid 11199
Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, derived from ZF set theory. Weakened from the original axiom in the form of statement in mulrid 11257, based on ideas by Eric Schmidt. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 11223. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ax1rid (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)

Proof of Theorem ax1rid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-r 11163 . 2 ℝ = (R × {0R})
2 oveq1 7438 . . 3 (⟨𝑥, 𝑦⟩ = 𝐴 → (⟨𝑥, 𝑦⟩ · 1) = (𝐴 · 1))
3 id 22 . . 3 (⟨𝑥, 𝑦⟩ = 𝐴 → ⟨𝑥, 𝑦⟩ = 𝐴)
42, 3eqeq12d 2751 . 2 (⟨𝑥, 𝑦⟩ = 𝐴 → ((⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩ ↔ (𝐴 · 1) = 𝐴))
5 elsni 4648 . . 3 (𝑦 ∈ {0R} → 𝑦 = 0R)
6 df-1 11161 . . . . . . 7 1 = ⟨1R, 0R
76oveq2i 7442 . . . . . 6 (⟨𝑥, 0R⟩ · 1) = (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩)
8 1sr 11119 . . . . . . . 8 1RR
9 mulresr 11177 . . . . . . . 8 ((𝑥R ∧ 1RR) → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨(𝑥 ·R 1R), 0R⟩)
108, 9mpan2 691 . . . . . . 7 (𝑥R → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨(𝑥 ·R 1R), 0R⟩)
11 1idsr 11136 . . . . . . . 8 (𝑥R → (𝑥 ·R 1R) = 𝑥)
1211opeq1d 4884 . . . . . . 7 (𝑥R → ⟨(𝑥 ·R 1R), 0R⟩ = ⟨𝑥, 0R⟩)
1310, 12eqtrd 2775 . . . . . 6 (𝑥R → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨𝑥, 0R⟩)
147, 13eqtrid 2787 . . . . 5 (𝑥R → (⟨𝑥, 0R⟩ · 1) = ⟨𝑥, 0R⟩)
15 opeq2 4879 . . . . . . 7 (𝑦 = 0R → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 0R⟩)
1615oveq1d 7446 . . . . . 6 (𝑦 = 0R → (⟨𝑥, 𝑦⟩ · 1) = (⟨𝑥, 0R⟩ · 1))
1716, 15eqeq12d 2751 . . . . 5 (𝑦 = 0R → ((⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩ ↔ (⟨𝑥, 0R⟩ · 1) = ⟨𝑥, 0R⟩))
1814, 17imbitrrid 246 . . . 4 (𝑦 = 0R → (𝑥R → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩))
1918impcom 407 . . 3 ((𝑥R𝑦 = 0R) → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩)
205, 19sylan2 593 . 2 ((𝑥R𝑦 ∈ {0R}) → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩)
211, 4, 20optocl 5783 1 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  {csn 4631  cop 4637  (class class class)co 7431  Rcnr 10903  0Rc0r 10904  1Rc1r 10905   ·R cmr 10908  cr 11152  1c1 11154   · cmul 11158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-omul 8510  df-er 8744  df-ec 8746  df-qs 8750  df-ni 10910  df-pli 10911  df-mi 10912  df-lti 10913  df-plpq 10946  df-mpq 10947  df-ltpq 10948  df-enq 10949  df-nq 10950  df-erq 10951  df-plq 10952  df-mq 10953  df-1nq 10954  df-rq 10955  df-ltnq 10956  df-np 11019  df-1p 11020  df-plp 11021  df-mp 11022  df-ltp 11023  df-enr 11093  df-nr 11094  df-plr 11095  df-mr 11096  df-0r 11098  df-1r 11099  df-m1r 11100  df-c 11159  df-1 11161  df-r 11163  df-mul 11165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator