| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax1rid | Structured version Visualization version GIF version | ||
| Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, derived from ZF set theory. Weakened from the original axiom in the form of statement in mulrid 11259, based on ideas by Eric Schmidt. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 11225. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax1rid | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-r 11165 | . 2 ⊢ ℝ = (R × {0R}) | |
| 2 | oveq1 7438 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (〈𝑥, 𝑦〉 · 1) = (𝐴 · 1)) | |
| 3 | id 22 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → 〈𝑥, 𝑦〉 = 𝐴) | |
| 4 | 2, 3 | eqeq12d 2753 | . 2 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → ((〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉 ↔ (𝐴 · 1) = 𝐴)) |
| 5 | elsni 4643 | . . 3 ⊢ (𝑦 ∈ {0R} → 𝑦 = 0R) | |
| 6 | df-1 11163 | . . . . . . 7 ⊢ 1 = 〈1R, 0R〉 | |
| 7 | 6 | oveq2i 7442 | . . . . . 6 ⊢ (〈𝑥, 0R〉 · 1) = (〈𝑥, 0R〉 · 〈1R, 0R〉) |
| 8 | 1sr 11121 | . . . . . . . 8 ⊢ 1R ∈ R | |
| 9 | mulresr 11179 | . . . . . . . 8 ⊢ ((𝑥 ∈ R ∧ 1R ∈ R) → (〈𝑥, 0R〉 · 〈1R, 0R〉) = 〈(𝑥 ·R 1R), 0R〉) | |
| 10 | 8, 9 | mpan2 691 | . . . . . . 7 ⊢ (𝑥 ∈ R → (〈𝑥, 0R〉 · 〈1R, 0R〉) = 〈(𝑥 ·R 1R), 0R〉) |
| 11 | 1idsr 11138 | . . . . . . . 8 ⊢ (𝑥 ∈ R → (𝑥 ·R 1R) = 𝑥) | |
| 12 | 11 | opeq1d 4879 | . . . . . . 7 ⊢ (𝑥 ∈ R → 〈(𝑥 ·R 1R), 0R〉 = 〈𝑥, 0R〉) |
| 13 | 10, 12 | eqtrd 2777 | . . . . . 6 ⊢ (𝑥 ∈ R → (〈𝑥, 0R〉 · 〈1R, 0R〉) = 〈𝑥, 0R〉) |
| 14 | 7, 13 | eqtrid 2789 | . . . . 5 ⊢ (𝑥 ∈ R → (〈𝑥, 0R〉 · 1) = 〈𝑥, 0R〉) |
| 15 | opeq2 4874 | . . . . . . 7 ⊢ (𝑦 = 0R → 〈𝑥, 𝑦〉 = 〈𝑥, 0R〉) | |
| 16 | 15 | oveq1d 7446 | . . . . . 6 ⊢ (𝑦 = 0R → (〈𝑥, 𝑦〉 · 1) = (〈𝑥, 0R〉 · 1)) |
| 17 | 16, 15 | eqeq12d 2753 | . . . . 5 ⊢ (𝑦 = 0R → ((〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉 ↔ (〈𝑥, 0R〉 · 1) = 〈𝑥, 0R〉)) |
| 18 | 14, 17 | imbitrrid 246 | . . . 4 ⊢ (𝑦 = 0R → (𝑥 ∈ R → (〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉)) |
| 19 | 18 | impcom 407 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 = 0R) → (〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉) |
| 20 | 5, 19 | sylan2 593 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ {0R}) → (〈𝑥, 𝑦〉 · 1) = 〈𝑥, 𝑦〉) |
| 21 | 1, 4, 20 | optocl 5780 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {csn 4626 〈cop 4632 (class class class)co 7431 Rcnr 10905 0Rc0r 10906 1Rc1r 10907 ·R cmr 10910 ℝcr 11154 1c1 11156 · cmul 11160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-omul 8511 df-er 8745 df-ec 8747 df-qs 8751 df-ni 10912 df-pli 10913 df-mi 10914 df-lti 10915 df-plpq 10948 df-mpq 10949 df-ltpq 10950 df-enq 10951 df-nq 10952 df-erq 10953 df-plq 10954 df-mq 10955 df-1nq 10956 df-rq 10957 df-ltnq 10958 df-np 11021 df-1p 11022 df-plp 11023 df-mp 11024 df-ltp 11025 df-enr 11095 df-nr 11096 df-plr 11097 df-mr 11098 df-0r 11100 df-1r 11101 df-m1r 11102 df-c 11161 df-1 11163 df-r 11165 df-mul 11167 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |