Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > adjbdln | Structured version Visualization version GIF version |
Description: The adjoint of a bounded linear operator is a bounded linear operator. (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
adjbdln | ⊢ (𝑇 ∈ BndLinOp → (adjℎ‘𝑇) ∈ BndLinOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdopadj 30345 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ dom adjℎ) | |
2 | adjval 30153 | . . . 4 ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘𝑇) = (℩𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑇 ∈ BndLinOp → (adjℎ‘𝑇) = (℩𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) |
4 | cnlnadj 30342 | . . . . . 6 ⊢ (𝑇 ∈ (LinOp ∩ ContOp) → ∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦))) | |
5 | lncnopbd 30300 | . . . . . 6 ⊢ (𝑇 ∈ (LinOp ∩ ContOp) ↔ 𝑇 ∈ BndLinOp) | |
6 | lncnbd 30301 | . . . . . . 7 ⊢ (LinOp ∩ ContOp) = BndLinOp | |
7 | 6 | rexeqi 3338 | . . . . . 6 ⊢ (∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) ↔ ∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦))) |
8 | 4, 5, 7 | 3imtr3i 290 | . . . . 5 ⊢ (𝑇 ∈ BndLinOp → ∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦))) |
9 | bdopf 30125 | . . . . . . . 8 ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) | |
10 | bdopf 30125 | . . . . . . . 8 ⊢ (𝑡 ∈ BndLinOp → 𝑡: ℋ⟶ ℋ) | |
11 | adjsym 30096 | . . . . . . . 8 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) | |
12 | 9, 10, 11 | syl2an 595 | . . . . . . 7 ⊢ ((𝑇 ∈ BndLinOp ∧ 𝑡 ∈ BndLinOp) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) |
13 | eqcom 2745 | . . . . . . . 8 ⊢ (((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) ↔ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) | |
14 | 13 | 2ralbii 3091 | . . . . . . 7 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) |
15 | 12, 14 | bitr4di 288 | . . . . . 6 ⊢ ((𝑇 ∈ BndLinOp ∧ 𝑡 ∈ BndLinOp) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)))) |
16 | 15 | rexbidva 3224 | . . . . 5 ⊢ (𝑇 ∈ BndLinOp → (∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ↔ ∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)))) |
17 | 8, 16 | mpbird 256 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → ∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) |
18 | adjeu 30152 | . . . . . 6 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 ∈ dom adjℎ ↔ ∃!𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) | |
19 | 9, 18 | syl 17 | . . . . 5 ⊢ (𝑇 ∈ BndLinOp → (𝑇 ∈ dom adjℎ ↔ ∃!𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) |
20 | 1, 19 | mpbid 231 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → ∃!𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) |
21 | ax-hilex 29262 | . . . . . . . 8 ⊢ ℋ ∈ V | |
22 | 21, 21 | elmap 8617 | . . . . . . 7 ⊢ (𝑡 ∈ ( ℋ ↑m ℋ) ↔ 𝑡: ℋ⟶ ℋ) |
23 | 10, 22 | sylibr 233 | . . . . . 6 ⊢ (𝑡 ∈ BndLinOp → 𝑡 ∈ ( ℋ ↑m ℋ)) |
24 | 23 | ssriv 3921 | . . . . 5 ⊢ BndLinOp ⊆ ( ℋ ↑m ℋ) |
25 | id 22 | . . . . . 6 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) | |
26 | 25 | rgenw 3075 | . . . . 5 ⊢ ∀𝑡 ∈ BndLinOp (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) |
27 | riotass2 7243 | . . . . 5 ⊢ (((BndLinOp ⊆ ( ℋ ↑m ℋ) ∧ ∀𝑡 ∈ BndLinOp (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) ∧ (∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ∧ ∃!𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) → (℩𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) = (℩𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) | |
28 | 24, 26, 27 | mpanl12 698 | . . . 4 ⊢ ((∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ∧ ∃!𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) → (℩𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) = (℩𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) |
29 | 17, 20, 28 | syl2anc 583 | . . 3 ⊢ (𝑇 ∈ BndLinOp → (℩𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) = (℩𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) |
30 | 3, 29 | eqtr4d 2781 | . 2 ⊢ (𝑇 ∈ BndLinOp → (adjℎ‘𝑇) = (℩𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) |
31 | 24 | a1i 11 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → BndLinOp ⊆ ( ℋ ↑m ℋ)) |
32 | reuss 4247 | . . . 4 ⊢ ((BndLinOp ⊆ ( ℋ ↑m ℋ) ∧ ∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ∧ ∃!𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) → ∃!𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) | |
33 | 31, 17, 20, 32 | syl3anc 1369 | . . 3 ⊢ (𝑇 ∈ BndLinOp → ∃!𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) |
34 | riotacl 7230 | . . 3 ⊢ (∃!𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) → (℩𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) ∈ BndLinOp) | |
35 | 33, 34 | syl 17 | . 2 ⊢ (𝑇 ∈ BndLinOp → (℩𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) ∈ BndLinOp) |
36 | 30, 35 | eqeltrd 2839 | 1 ⊢ (𝑇 ∈ BndLinOp → (adjℎ‘𝑇) ∈ BndLinOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∃!wreu 3065 ∩ cin 3882 ⊆ wss 3883 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 ↑m cmap 8573 ℋchba 29182 ·ih csp 29185 ContOpccop 29209 LinOpclo 29210 BndLinOpcbo 29211 adjℎcado 29218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvmulass 29270 ax-hvdistr1 29271 ax-hvdistr2 29272 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his2 29346 ax-his3 29347 ax-his4 29348 ax-hcompl 29465 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-cn 22286 df-cnp 22287 df-lm 22288 df-t1 22373 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cfil 24324 df-cau 24325 df-cmet 24326 df-grpo 28756 df-gid 28757 df-ginv 28758 df-gdiv 28759 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-vs 28862 df-nmcv 28863 df-ims 28864 df-dip 28964 df-ssp 28985 df-ph 29076 df-cbn 29126 df-hnorm 29231 df-hba 29232 df-hvsub 29234 df-hlim 29235 df-hcau 29236 df-sh 29470 df-ch 29484 df-oc 29515 df-ch0 29516 df-shs 29571 df-pjh 29658 df-h0op 30011 df-nmop 30102 df-cnop 30103 df-lnop 30104 df-bdop 30105 df-unop 30106 df-hmop 30107 df-nmfn 30108 df-nlfn 30109 df-cnfn 30110 df-lnfn 30111 df-adjh 30112 |
This theorem is referenced by: adjbdlnb 30347 adjbd1o 30348 nmopadjlem 30352 nmopadji 30353 adjcoi 30363 nmopcoadj2i 30365 nmopcoadj0i 30366 |
Copyright terms: Public domain | W3C validator |