| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > adjbdln | Structured version Visualization version GIF version | ||
| Description: The adjoint of a bounded linear operator is a bounded linear operator. (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| adjbdln | ⊢ (𝑇 ∈ BndLinOp → (adjℎ‘𝑇) ∈ BndLinOp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdopadj 32054 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ dom adjℎ) | |
| 2 | adjval 31862 | . . . 4 ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘𝑇) = (℩𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑇 ∈ BndLinOp → (adjℎ‘𝑇) = (℩𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) |
| 4 | cnlnadj 32051 | . . . . . 6 ⊢ (𝑇 ∈ (LinOp ∩ ContOp) → ∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦))) | |
| 5 | lncnopbd 32009 | . . . . . 6 ⊢ (𝑇 ∈ (LinOp ∩ ContOp) ↔ 𝑇 ∈ BndLinOp) | |
| 6 | lncnbd 32010 | . . . . . . 7 ⊢ (LinOp ∩ ContOp) = BndLinOp | |
| 7 | 6 | rexeqi 3291 | . . . . . 6 ⊢ (∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) ↔ ∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦))) |
| 8 | 4, 5, 7 | 3imtr3i 291 | . . . . 5 ⊢ (𝑇 ∈ BndLinOp → ∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦))) |
| 9 | bdopf 31834 | . . . . . . . 8 ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) | |
| 10 | bdopf 31834 | . . . . . . . 8 ⊢ (𝑡 ∈ BndLinOp → 𝑡: ℋ⟶ ℋ) | |
| 11 | adjsym 31805 | . . . . . . . 8 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) | |
| 12 | 9, 10, 11 | syl2an 596 | . . . . . . 7 ⊢ ((𝑇 ∈ BndLinOp ∧ 𝑡 ∈ BndLinOp) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) |
| 13 | eqcom 2738 | . . . . . . . 8 ⊢ (((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) ↔ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) | |
| 14 | 13 | 2ralbii 3107 | . . . . . . 7 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) |
| 15 | 12, 14 | bitr4di 289 | . . . . . 6 ⊢ ((𝑇 ∈ BndLinOp ∧ 𝑡 ∈ BndLinOp) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)))) |
| 16 | 15 | rexbidva 3154 | . . . . 5 ⊢ (𝑇 ∈ BndLinOp → (∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ↔ ∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)))) |
| 17 | 8, 16 | mpbird 257 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → ∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) |
| 18 | adjeu 31861 | . . . . . 6 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 ∈ dom adjℎ ↔ ∃!𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) | |
| 19 | 9, 18 | syl 17 | . . . . 5 ⊢ (𝑇 ∈ BndLinOp → (𝑇 ∈ dom adjℎ ↔ ∃!𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) |
| 20 | 1, 19 | mpbid 232 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → ∃!𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) |
| 21 | ax-hilex 30971 | . . . . . . . 8 ⊢ ℋ ∈ V | |
| 22 | 21, 21 | elmap 8790 | . . . . . . 7 ⊢ (𝑡 ∈ ( ℋ ↑m ℋ) ↔ 𝑡: ℋ⟶ ℋ) |
| 23 | 10, 22 | sylibr 234 | . . . . . 6 ⊢ (𝑡 ∈ BndLinOp → 𝑡 ∈ ( ℋ ↑m ℋ)) |
| 24 | 23 | ssriv 3933 | . . . . 5 ⊢ BndLinOp ⊆ ( ℋ ↑m ℋ) |
| 25 | id 22 | . . . . . 6 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) | |
| 26 | 25 | rgenw 3051 | . . . . 5 ⊢ ∀𝑡 ∈ BndLinOp (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) |
| 27 | riotass2 7328 | . . . . 5 ⊢ (((BndLinOp ⊆ ( ℋ ↑m ℋ) ∧ ∀𝑡 ∈ BndLinOp (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) ∧ (∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ∧ ∃!𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) → (℩𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) = (℩𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) | |
| 28 | 24, 26, 27 | mpanl12 702 | . . . 4 ⊢ ((∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ∧ ∃!𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) → (℩𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) = (℩𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) |
| 29 | 17, 20, 28 | syl2anc 584 | . . 3 ⊢ (𝑇 ∈ BndLinOp → (℩𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) = (℩𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) |
| 30 | 3, 29 | eqtr4d 2769 | . 2 ⊢ (𝑇 ∈ BndLinOp → (adjℎ‘𝑇) = (℩𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) |
| 31 | 24 | a1i 11 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → BndLinOp ⊆ ( ℋ ↑m ℋ)) |
| 32 | reuss 4272 | . . . 4 ⊢ ((BndLinOp ⊆ ( ℋ ↑m ℋ) ∧ ∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ∧ ∃!𝑡 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) → ∃!𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) | |
| 33 | 31, 17, 20, 32 | syl3anc 1373 | . . 3 ⊢ (𝑇 ∈ BndLinOp → ∃!𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) |
| 34 | riotacl 7315 | . . 3 ⊢ (∃!𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) → (℩𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) ∈ BndLinOp) | |
| 35 | 33, 34 | syl 17 | . 2 ⊢ (𝑇 ∈ BndLinOp → (℩𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) ∈ BndLinOp) |
| 36 | 30, 35 | eqeltrd 2831 | 1 ⊢ (𝑇 ∈ BndLinOp → (adjℎ‘𝑇) ∈ BndLinOp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∃!wreu 3344 ∩ cin 3896 ⊆ wss 3897 dom cdm 5611 ⟶wf 6472 ‘cfv 6476 ℩crio 7297 (class class class)co 7341 ↑m cmap 8745 ℋchba 30891 ·ih csp 30894 ContOpccop 30918 LinOpclo 30919 BndLinOpcbo 30920 adjℎcado 30927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cc 10321 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 ax-mulf 11081 ax-hilex 30971 ax-hfvadd 30972 ax-hvcom 30973 ax-hvass 30974 ax-hv0cl 30975 ax-hvaddid 30976 ax-hfvmul 30977 ax-hvmulid 30978 ax-hvmulass 30979 ax-hvdistr1 30980 ax-hvdistr2 30981 ax-hvmul0 30982 ax-hfi 31051 ax-his1 31054 ax-his2 31055 ax-his3 31056 ax-his4 31057 ax-hcompl 31174 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-acn 9830 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ioo 13244 df-ico 13246 df-icc 13247 df-fz 13403 df-fzo 13550 df-fl 13691 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-rlim 15391 df-sum 15589 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-rest 17321 df-topn 17322 df-0g 17340 df-gsum 17341 df-topgen 17342 df-pt 17343 df-prds 17346 df-xrs 17401 df-qtop 17406 df-imas 17407 df-xps 17409 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19224 df-cmn 19689 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-cnfld 21287 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cld 22929 df-ntr 22930 df-cls 22931 df-nei 23008 df-cn 23137 df-cnp 23138 df-lm 23139 df-t1 23224 df-haus 23225 df-tx 23472 df-hmeo 23665 df-fil 23756 df-fm 23848 df-flim 23849 df-flf 23850 df-xms 24230 df-ms 24231 df-tms 24232 df-cfil 25177 df-cau 25178 df-cmet 25179 df-grpo 30465 df-gid 30466 df-ginv 30467 df-gdiv 30468 df-ablo 30517 df-vc 30531 df-nv 30564 df-va 30567 df-ba 30568 df-sm 30569 df-0v 30570 df-vs 30571 df-nmcv 30572 df-ims 30573 df-dip 30673 df-ssp 30694 df-ph 30785 df-cbn 30835 df-hnorm 30940 df-hba 30941 df-hvsub 30943 df-hlim 30944 df-hcau 30945 df-sh 31179 df-ch 31193 df-oc 31224 df-ch0 31225 df-shs 31280 df-pjh 31367 df-h0op 31720 df-nmop 31811 df-cnop 31812 df-lnop 31813 df-bdop 31814 df-unop 31815 df-hmop 31816 df-nmfn 31817 df-nlfn 31818 df-cnfn 31819 df-lnfn 31820 df-adjh 31821 |
| This theorem is referenced by: adjbdlnb 32056 adjbd1o 32057 nmopadjlem 32061 nmopadji 32062 adjcoi 32072 nmopcoadj2i 32074 nmopcoadj0i 32075 |
| Copyright terms: Public domain | W3C validator |