Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  dfadj2 Structured version   Visualization version   GIF version

 Description: Alternate definition of the adjoint of a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dfadj2 adj = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))}
Distinct variable group:   𝑢,𝑡,𝑥,𝑦

StepHypRef Expression
1 df-adjh 29639 . 2 adj = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑢𝑦)))}
2 eqcom 2805 . . . . . . 7 (((𝑡𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑢𝑦)) ↔ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))
322ralbii 3134 . . . . . 6 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑢𝑦)) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))
4 adjsym 29623 . . . . . 6 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)))
53, 4bitr4id 293 . . . . 5 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑢𝑦)) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
65pm5.32i 578 . . . 4 (((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑢𝑦))) ↔ ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
7 df-3an 1086 . . . 4 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑢𝑦))) ↔ ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑢𝑦))))
8 df-3an 1086 . . . 4 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
96, 7, 83bitr4i 306 . . 3 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑢𝑦))) ↔ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
109opabbii 5097 . 2 {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑢𝑦)))} = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))}
111, 10eqtri 2821 1 adj = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))}