HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjeq Structured version   Visualization version   GIF version

Theorem adjeq 30276
Description: A property that determines the adjoint of a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjeq ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))) → (adj𝑇) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝑇,𝑦

Proof of Theorem adjeq
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funadj 30227 . 2 Fun adj
2 df-adjh 30190 . . . . . 6 adj = {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)))}
32eleq2i 2831 . . . . 5 (⟨𝑇, 𝑆⟩ ∈ adj ↔ ⟨𝑇, 𝑆⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)))})
4 ax-hilex 29340 . . . . . . 7 ℋ ∈ V
5 fex 7096 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ ℋ ∈ V) → 𝑇 ∈ V)
64, 5mpan2 687 . . . . . 6 (𝑇: ℋ⟶ ℋ → 𝑇 ∈ V)
7 fex 7096 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ ℋ ∈ V) → 𝑆 ∈ V)
84, 7mpan2 687 . . . . . 6 (𝑆: ℋ⟶ ℋ → 𝑆 ∈ V)
9 feq1 6577 . . . . . . . 8 (𝑧 = 𝑇 → (𝑧: ℋ⟶ ℋ ↔ 𝑇: ℋ⟶ ℋ))
10 fveq1 6767 . . . . . . . . . . 11 (𝑧 = 𝑇 → (𝑧𝑥) = (𝑇𝑥))
1110oveq1d 7283 . . . . . . . . . 10 (𝑧 = 𝑇 → ((𝑧𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦))
1211eqeq1d 2741 . . . . . . . . 9 (𝑧 = 𝑇 → (((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)) ↔ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦))))
13122ralbidv 3124 . . . . . . . 8 (𝑧 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦))))
149, 133anbi13d 1436 . . . . . . 7 (𝑧 = 𝑇 → ((𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦))) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)))))
15 feq1 6577 . . . . . . . 8 (𝑤 = 𝑆 → (𝑤: ℋ⟶ ℋ ↔ 𝑆: ℋ⟶ ℋ))
16 fveq1 6767 . . . . . . . . . . 11 (𝑤 = 𝑆 → (𝑤𝑦) = (𝑆𝑦))
1716oveq2d 7284 . . . . . . . . . 10 (𝑤 = 𝑆 → (𝑥 ·ih (𝑤𝑦)) = (𝑥 ·ih (𝑆𝑦)))
1817eqeq2d 2750 . . . . . . . . 9 (𝑤 = 𝑆 → (((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)) ↔ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))))
19182ralbidv 3124 . . . . . . . 8 (𝑤 = 𝑆 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))))
2015, 193anbi23d 1437 . . . . . . 7 (𝑤 = 𝑆 → ((𝑇: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦))) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)))))
2114, 20opelopabg 5452 . . . . . 6 ((𝑇 ∈ V ∧ 𝑆 ∈ V) → (⟨𝑇, 𝑆⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)))} ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)))))
226, 8, 21syl2an 595 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) → (⟨𝑇, 𝑆⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)))} ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)))))
233, 22syl5bb 282 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) → (⟨𝑇, 𝑆⟩ ∈ adj ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)))))
24 df-3an 1087 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))) ↔ ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))))
2524baibr 536 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)))))
2623, 25bitr4d 281 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) → (⟨𝑇, 𝑆⟩ ∈ adj ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))))
2726biimp3ar 1468 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))) → ⟨𝑇, 𝑆⟩ ∈ adj)
28 funopfv 6815 . 2 (Fun adj → (⟨𝑇, 𝑆⟩ ∈ adj → (adj𝑇) = 𝑆))
291, 27, 28mpsyl 68 1 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))) → (adj𝑇) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wral 3065  Vcvv 3430  cop 4572  {copab 5140  Fun wfun 6424  wf 6426  cfv 6430  (class class class)co 7268  chba 29260   ·ih csp 29263  adjcado 29296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-hilex 29340  ax-hfvadd 29341  ax-hvcom 29342  ax-hvass 29343  ax-hv0cl 29344  ax-hvaddid 29345  ax-hfvmul 29346  ax-hvmulid 29347  ax-hvdistr2 29350  ax-hvmul0 29351  ax-hfi 29420  ax-his1 29423  ax-his2 29424  ax-his3 29425  ax-his4 29426
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-2 12019  df-cj 14791  df-re 14792  df-im 14793  df-hvsub 29312  df-adjh 30190
This theorem is referenced by:  unopadj2  30279  hmopadj  30280  adj0  30335  adjmul  30433  adjadd  30434
  Copyright terms: Public domain W3C validator