Step | Hyp | Ref
| Expression |
1 | | funadj 30293 |
. 2
⊢ Fun
adjℎ |
2 | | df-adjh 30256 |
. . . . . 6
⊢
adjℎ = {〈𝑧, 𝑤〉 ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧
∀𝑥 ∈ ℋ
∀𝑦 ∈ ℋ
((𝑧‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑤‘𝑦)))} |
3 | 2 | eleq2i 2828 |
. . . . 5
⊢
(〈𝑇, 𝑆〉 ∈
adjℎ ↔ 〈𝑇, 𝑆〉 ∈ {〈𝑧, 𝑤〉 ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧
∀𝑥 ∈ ℋ
∀𝑦 ∈ ℋ
((𝑧‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑤‘𝑦)))}) |
4 | | ax-hilex 29406 |
. . . . . . 7
⊢ ℋ
∈ V |
5 | | fex 7134 |
. . . . . . 7
⊢ ((𝑇: ℋ⟶ ℋ ∧
ℋ ∈ V) → 𝑇
∈ V) |
6 | 4, 5 | mpan2 689 |
. . . . . 6
⊢ (𝑇: ℋ⟶ ℋ →
𝑇 ∈
V) |
7 | | fex 7134 |
. . . . . . 7
⊢ ((𝑆: ℋ⟶ ℋ ∧
ℋ ∈ V) → 𝑆
∈ V) |
8 | 4, 7 | mpan2 689 |
. . . . . 6
⊢ (𝑆: ℋ⟶ ℋ →
𝑆 ∈
V) |
9 | | feq1 6611 |
. . . . . . . 8
⊢ (𝑧 = 𝑇 → (𝑧: ℋ⟶ ℋ ↔ 𝑇: ℋ⟶
ℋ)) |
10 | | fveq1 6803 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑇 → (𝑧‘𝑥) = (𝑇‘𝑥)) |
11 | 10 | oveq1d 7322 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑇 → ((𝑧‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦)) |
12 | 11 | eqeq1d 2738 |
. . . . . . . . 9
⊢ (𝑧 = 𝑇 → (((𝑧‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤‘𝑦)) ↔ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤‘𝑦)))) |
13 | 12 | 2ralbidv 3209 |
. . . . . . . 8
⊢ (𝑧 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤‘𝑦)) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤‘𝑦)))) |
14 | 9, 13 | 3anbi13d 1438 |
. . . . . . 7
⊢ (𝑧 = 𝑇 → ((𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧
∀𝑥 ∈ ℋ
∀𝑦 ∈ ℋ
((𝑧‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑤‘𝑦))) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧
∀𝑥 ∈ ℋ
∀𝑦 ∈ ℋ
((𝑇‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑤‘𝑦))))) |
15 | | feq1 6611 |
. . . . . . . 8
⊢ (𝑤 = 𝑆 → (𝑤: ℋ⟶ ℋ ↔ 𝑆: ℋ⟶
ℋ)) |
16 | | fveq1 6803 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑆 → (𝑤‘𝑦) = (𝑆‘𝑦)) |
17 | 16 | oveq2d 7323 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑆 → (𝑥 ·ih (𝑤‘𝑦)) = (𝑥 ·ih (𝑆‘𝑦))) |
18 | 17 | eqeq2d 2747 |
. . . . . . . . 9
⊢ (𝑤 = 𝑆 → (((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤‘𝑦)) ↔ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆‘𝑦)))) |
19 | 18 | 2ralbidv 3209 |
. . . . . . . 8
⊢ (𝑤 = 𝑆 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤‘𝑦)) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆‘𝑦)))) |
20 | 15, 19 | 3anbi23d 1439 |
. . . . . . 7
⊢ (𝑤 = 𝑆 → ((𝑇: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧
∀𝑥 ∈ ℋ
∀𝑦 ∈ ℋ
((𝑇‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑤‘𝑦))) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧
∀𝑥 ∈ ℋ
∀𝑦 ∈ ℋ
((𝑇‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑆‘𝑦))))) |
21 | 14, 20 | opelopabg 5464 |
. . . . . 6
⊢ ((𝑇 ∈ V ∧ 𝑆 ∈ V) → (〈𝑇, 𝑆〉 ∈ {〈𝑧, 𝑤〉 ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧
∀𝑥 ∈ ℋ
∀𝑦 ∈ ℋ
((𝑧‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑤‘𝑦)))} ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧
∀𝑥 ∈ ℋ
∀𝑦 ∈ ℋ
((𝑇‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑆‘𝑦))))) |
22 | 6, 8, 21 | syl2an 597 |
. . . . 5
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑆: ℋ⟶ ℋ)
→ (〈𝑇, 𝑆〉 ∈ {〈𝑧, 𝑤〉 ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧
∀𝑥 ∈ ℋ
∀𝑦 ∈ ℋ
((𝑧‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑤‘𝑦)))} ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧
∀𝑥 ∈ ℋ
∀𝑦 ∈ ℋ
((𝑇‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑆‘𝑦))))) |
23 | 3, 22 | bitrid 283 |
. . . 4
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑆: ℋ⟶ ℋ)
→ (〈𝑇, 𝑆〉 ∈
adjℎ ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧
∀𝑥 ∈ ℋ
∀𝑦 ∈ ℋ
((𝑇‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑆‘𝑦))))) |
24 | | df-3an 1089 |
. . . . 5
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑆: ℋ⟶ ℋ
∧ ∀𝑥 ∈
ℋ ∀𝑦 ∈
ℋ ((𝑇‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑆‘𝑦))) ↔ ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧
∀𝑥 ∈ ℋ
∀𝑦 ∈ ℋ
((𝑇‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑆‘𝑦)))) |
25 | 24 | baibr 538 |
. . . 4
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑆: ℋ⟶ ℋ)
→ (∀𝑥 ∈
ℋ ∀𝑦 ∈
ℋ ((𝑇‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑆‘𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧
∀𝑥 ∈ ℋ
∀𝑦 ∈ ℋ
((𝑇‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑆‘𝑦))))) |
26 | 23, 25 | bitr4d 282 |
. . 3
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑆: ℋ⟶ ℋ)
→ (〈𝑇, 𝑆〉 ∈
adjℎ ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆‘𝑦)))) |
27 | 26 | biimp3ar 1470 |
. 2
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑆: ℋ⟶ ℋ
∧ ∀𝑥 ∈
ℋ ∀𝑦 ∈
ℋ ((𝑇‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑆‘𝑦))) → 〈𝑇, 𝑆〉 ∈
adjℎ) |
28 | | funopfv 6853 |
. 2
⊢ (Fun
adjℎ → (〈𝑇, 𝑆〉 ∈ adjℎ →
(adjℎ‘𝑇) = 𝑆)) |
29 | 1, 27, 28 | mpsyl 68 |
1
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑆: ℋ⟶ ℋ
∧ ∀𝑥 ∈
ℋ ∀𝑦 ∈
ℋ ((𝑇‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑆‘𝑦))) →
(adjℎ‘𝑇) = 𝑆) |