HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjeq Structured version   Visualization version   GIF version

Theorem adjeq 29718
Description: A property that determines the adjoint of a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjeq ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))) → (adj𝑇) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝑇,𝑦

Proof of Theorem adjeq
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funadj 29669 . 2 Fun adj
2 df-adjh 29632 . . . . . 6 adj = {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)))}
32eleq2i 2881 . . . . 5 (⟨𝑇, 𝑆⟩ ∈ adj ↔ ⟨𝑇, 𝑆⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)))})
4 ax-hilex 28782 . . . . . . 7 ℋ ∈ V
5 fex 6966 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ ℋ ∈ V) → 𝑇 ∈ V)
64, 5mpan2 690 . . . . . 6 (𝑇: ℋ⟶ ℋ → 𝑇 ∈ V)
7 fex 6966 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ ℋ ∈ V) → 𝑆 ∈ V)
84, 7mpan2 690 . . . . . 6 (𝑆: ℋ⟶ ℋ → 𝑆 ∈ V)
9 feq1 6468 . . . . . . . 8 (𝑧 = 𝑇 → (𝑧: ℋ⟶ ℋ ↔ 𝑇: ℋ⟶ ℋ))
10 fveq1 6644 . . . . . . . . . . 11 (𝑧 = 𝑇 → (𝑧𝑥) = (𝑇𝑥))
1110oveq1d 7150 . . . . . . . . . 10 (𝑧 = 𝑇 → ((𝑧𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦))
1211eqeq1d 2800 . . . . . . . . 9 (𝑧 = 𝑇 → (((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)) ↔ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦))))
13122ralbidv 3164 . . . . . . . 8 (𝑧 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦))))
149, 133anbi13d 1435 . . . . . . 7 (𝑧 = 𝑇 → ((𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦))) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)))))
15 feq1 6468 . . . . . . . 8 (𝑤 = 𝑆 → (𝑤: ℋ⟶ ℋ ↔ 𝑆: ℋ⟶ ℋ))
16 fveq1 6644 . . . . . . . . . . 11 (𝑤 = 𝑆 → (𝑤𝑦) = (𝑆𝑦))
1716oveq2d 7151 . . . . . . . . . 10 (𝑤 = 𝑆 → (𝑥 ·ih (𝑤𝑦)) = (𝑥 ·ih (𝑆𝑦)))
1817eqeq2d 2809 . . . . . . . . 9 (𝑤 = 𝑆 → (((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)) ↔ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))))
19182ralbidv 3164 . . . . . . . 8 (𝑤 = 𝑆 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))))
2015, 193anbi23d 1436 . . . . . . 7 (𝑤 = 𝑆 → ((𝑇: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦))) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)))))
2114, 20opelopabg 5390 . . . . . 6 ((𝑇 ∈ V ∧ 𝑆 ∈ V) → (⟨𝑇, 𝑆⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)))} ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)))))
226, 8, 21syl2an 598 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) → (⟨𝑇, 𝑆⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)))} ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)))))
233, 22syl5bb 286 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) → (⟨𝑇, 𝑆⟩ ∈ adj ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)))))
24 df-3an 1086 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))) ↔ ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))))
2524baibr 540 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)))))
2623, 25bitr4d 285 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) → (⟨𝑇, 𝑆⟩ ∈ adj ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))))
2726biimp3ar 1467 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))) → ⟨𝑇, 𝑆⟩ ∈ adj)
28 funopfv 6692 . 2 (Fun adj → (⟨𝑇, 𝑆⟩ ∈ adj → (adj𝑇) = 𝑆))
291, 27, 28mpsyl 68 1 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))) → (adj𝑇) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  cop 4531  {copab 5092  Fun wfun 6318  wf 6320  cfv 6324  (class class class)co 7135  chba 28702   ·ih csp 28705  adjcado 28738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-hilex 28782  ax-hfvadd 28783  ax-hvcom 28784  ax-hvass 28785  ax-hv0cl 28786  ax-hvaddid 28787  ax-hfvmul 28788  ax-hvmulid 28789  ax-hvdistr2 28792  ax-hvmul0 28793  ax-hfi 28862  ax-his1 28865  ax-his2 28866  ax-his3 28867  ax-his4 28868
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-2 11688  df-cj 14450  df-re 14451  df-im 14452  df-hvsub 28754  df-adjh 29632
This theorem is referenced by:  unopadj2  29721  hmopadj  29722  adj0  29777  adjmul  29875  adjadd  29876
  Copyright terms: Public domain W3C validator