| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bnj19 | Structured version Visualization version GIF version | ||
| Description: Define the following predicate: 𝐵 is transitive for 𝐴 and 𝑅. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-bnj19 | ⊢ ( TrFo(𝐵, 𝐴, 𝑅) ↔ ∀𝑥 ∈ 𝐵 pred(𝑥, 𝐴, 𝑅) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cR | . . 3 class 𝑅 | |
| 4 | 1, 2, 3 | w-bnj19 34710 | . 2 wff TrFo(𝐵, 𝐴, 𝑅) |
| 5 | vx | . . . . . 6 setvar 𝑥 | |
| 6 | 5 | cv 1539 | . . . . 5 class 𝑥 |
| 7 | 1, 3, 6 | c-bnj14 34702 | . . . 4 class pred(𝑥, 𝐴, 𝑅) |
| 8 | 7, 2 | wss 3951 | . . 3 wff pred(𝑥, 𝐴, 𝑅) ⊆ 𝐵 |
| 9 | 8, 5, 2 | wral 3061 | . 2 wff ∀𝑥 ∈ 𝐵 pred(𝑥, 𝐴, 𝑅) ⊆ 𝐵 |
| 10 | 4, 9 | wb 206 | 1 wff ( TrFo(𝐵, 𝐴, 𝑅) ↔ ∀𝑥 ∈ 𝐵 pred(𝑥, 𝐴, 𝑅) ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| This definition is referenced by: bnj978 34963 bnj1118 34998 bnj1125 35006 bnj1137 35009 bnj1408 35050 |
| Copyright terms: Public domain | W3C validator |