Proof of Theorem bnj1118
| Step | Hyp | Ref
| Expression |
| 1 | | bnj1118.3 |
. . . 4
⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| 2 | | bnj1118.7 |
. . . 4
⊢ 𝐷 = (ω ∖
{∅}) |
| 3 | | bnj1118.18 |
. . . 4
⊢ (𝜎 ↔ ((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′)) |
| 4 | | bnj1118.19 |
. . . 4
⊢ (𝜑0 ↔ (𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓)) |
| 5 | | bnj1118.26 |
. . . 4
⊢ (𝜂′ ↔ ((𝑓 ∈ 𝐾 ∧ 𝑗 ∈ dom 𝑓) → (𝑓‘𝑗) ⊆ 𝐵)) |
| 6 | 1, 2, 3, 4, 5 | bnj1110 34996 |
. . 3
⊢
∃𝑗((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) |
| 7 | | ancl 544 |
. . 3
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → ((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → ((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)))) |
| 8 | 6, 7 | bnj101 34737 |
. 2
⊢
∃𝑗((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → ((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵))) |
| 9 | | simpr2 1196 |
. . . 4
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → 𝑖 = suc 𝑗) |
| 10 | 1 | bnj1254 34823 |
. . . . . . 7
⊢ (𝜒 → 𝜓) |
| 11 | 10 | 3ad2ant3 1136 |
. . . . . 6
⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒) → 𝜓) |
| 12 | 11 | ad2antrl 728 |
. . . . 5
⊢ ((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → 𝜓) |
| 13 | 12 | adantr 480 |
. . . 4
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → 𝜓) |
| 14 | 1 | bnj1232 34817 |
. . . . . . . . 9
⊢ (𝜒 → 𝑛 ∈ 𝐷) |
| 15 | 14 | 3ad2ant3 1136 |
. . . . . . . 8
⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒) → 𝑛 ∈ 𝐷) |
| 16 | 15 | ad2antrl 728 |
. . . . . . 7
⊢ ((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → 𝑛 ∈ 𝐷) |
| 17 | 16 | adantr 480 |
. . . . . 6
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → 𝑛 ∈ 𝐷) |
| 18 | | simpr1 1195 |
. . . . . 6
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → 𝑗 ∈ 𝑛) |
| 19 | 2 | bnj923 34782 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
| 20 | 19 | anim1i 615 |
. . . . . . 7
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑗 ∈ 𝑛) → (𝑛 ∈ ω ∧ 𝑗 ∈ 𝑛)) |
| 21 | 20 | ancomd 461 |
. . . . . 6
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑗 ∈ 𝑛) → (𝑗 ∈ 𝑛 ∧ 𝑛 ∈ ω)) |
| 22 | 17, 18, 21 | syl2anc 584 |
. . . . 5
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → (𝑗 ∈ 𝑛 ∧ 𝑛 ∈ ω)) |
| 23 | | elnn 7898 |
. . . . 5
⊢ ((𝑗 ∈ 𝑛 ∧ 𝑛 ∈ ω) → 𝑗 ∈ ω) |
| 24 | 22, 23 | syl 17 |
. . . 4
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → 𝑗 ∈ ω) |
| 25 | 4 | bnj1232 34817 |
. . . . . 6
⊢ (𝜑0 → 𝑖 ∈ 𝑛) |
| 26 | 25 | adantl 481 |
. . . . 5
⊢ (((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0) → 𝑖 ∈ 𝑛) |
| 27 | 26 | ad2antlr 727 |
. . . 4
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → 𝑖 ∈ 𝑛) |
| 28 | 9, 13, 24, 27 | bnj951 34789 |
. . 3
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → (𝑖 = suc 𝑗 ∧ 𝜓 ∧ 𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛)) |
| 29 | | bnj1118.5 |
. . . . . . 7
⊢ (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)) |
| 30 | 29 | simp2bi 1147 |
. . . . . 6
⊢ (𝜏 → TrFo(𝐵, 𝐴, 𝑅)) |
| 31 | 30 | 3ad2ant2 1135 |
. . . . 5
⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒) → TrFo(𝐵, 𝐴, 𝑅)) |
| 32 | 31 | ad2antrl 728 |
. . . 4
⊢ ((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → TrFo(𝐵, 𝐴, 𝑅)) |
| 33 | | simp3 1139 |
. . . 4
⊢ ((𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵) → (𝑓‘𝑗) ⊆ 𝐵) |
| 34 | 32, 33 | anim12i 613 |
. . 3
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → ( TrFo(𝐵, 𝐴, 𝑅) ∧ (𝑓‘𝑗) ⊆ 𝐵)) |
| 35 | | bnj256 34720 |
. . . . 5
⊢ ((𝑖 = suc 𝑗 ∧ 𝜓 ∧ 𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛) ↔ ((𝑖 = suc 𝑗 ∧ 𝜓) ∧ (𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛))) |
| 36 | | bnj1118.2 |
. . . . . . . . . 10
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 37 | 36 | bnj1112 34997 |
. . . . . . . . 9
⊢ (𝜓 ↔ ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛) → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
| 38 | 37 | biimpi 216 |
. . . . . . . 8
⊢ (𝜓 → ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛) → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
| 39 | 38 | 19.21bi 2189 |
. . . . . . 7
⊢ (𝜓 → ((𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛) → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
| 40 | | eleq1 2829 |
. . . . . . . . 9
⊢ (𝑖 = suc 𝑗 → (𝑖 ∈ 𝑛 ↔ suc 𝑗 ∈ 𝑛)) |
| 41 | 40 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑖 = suc 𝑗 → ((𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛) ↔ (𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛))) |
| 42 | | fveqeq2 6915 |
. . . . . . . 8
⊢ (𝑖 = suc 𝑗 → ((𝑓‘𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
| 43 | 41, 42 | imbi12d 344 |
. . . . . . 7
⊢ (𝑖 = suc 𝑗 → (((𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛) → (𝑓‘𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)) ↔ ((𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛) → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)))) |
| 44 | 39, 43 | imbitrrid 246 |
. . . . . 6
⊢ (𝑖 = suc 𝑗 → (𝜓 → ((𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛) → (𝑓‘𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)))) |
| 45 | 44 | imp31 417 |
. . . . 5
⊢ (((𝑖 = suc 𝑗 ∧ 𝜓) ∧ (𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛)) → (𝑓‘𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)) |
| 46 | 35, 45 | sylbi 217 |
. . . 4
⊢ ((𝑖 = suc 𝑗 ∧ 𝜓 ∧ 𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛) → (𝑓‘𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)) |
| 47 | | df-bnj19 34711 |
. . . . . . 7
⊢ (
TrFo(𝐵, 𝐴, 𝑅) ↔ ∀𝑦 ∈ 𝐵 pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵) |
| 48 | | ssralv 4052 |
. . . . . . 7
⊢ ((𝑓‘𝑗) ⊆ 𝐵 → (∀𝑦 ∈ 𝐵 pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵 → ∀𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵)) |
| 49 | 47, 48 | biimtrid 242 |
. . . . . 6
⊢ ((𝑓‘𝑗) ⊆ 𝐵 → ( TrFo(𝐵, 𝐴, 𝑅) → ∀𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵)) |
| 50 | 49 | impcom 407 |
. . . . 5
⊢ ((
TrFo(𝐵, 𝐴, 𝑅) ∧ (𝑓‘𝑗) ⊆ 𝐵) → ∀𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵) |
| 51 | | iunss 5045 |
. . . . 5
⊢ (∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵 ↔ ∀𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵) |
| 52 | 50, 51 | sylibr 234 |
. . . 4
⊢ ((
TrFo(𝐵, 𝐴, 𝑅) ∧ (𝑓‘𝑗) ⊆ 𝐵) → ∪
𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵) |
| 53 | | sseq1 4009 |
. . . . 5
⊢ ((𝑓‘𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) → ((𝑓‘𝑖) ⊆ 𝐵 ↔ ∪
𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵)) |
| 54 | 53 | biimpar 477 |
. . . 4
⊢ (((𝑓‘𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ∧ ∪
𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵) → (𝑓‘𝑖) ⊆ 𝐵) |
| 55 | 46, 52, 54 | syl2an 596 |
. . 3
⊢ (((𝑖 = suc 𝑗 ∧ 𝜓 ∧ 𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛) ∧ ( TrFo(𝐵, 𝐴, 𝑅) ∧ (𝑓‘𝑗) ⊆ 𝐵)) → (𝑓‘𝑖) ⊆ 𝐵) |
| 56 | 28, 34, 55 | syl2anc 584 |
. 2
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → (𝑓‘𝑖) ⊆ 𝐵) |
| 57 | 8, 56 | bnj1023 34794 |
1
⊢
∃𝑗((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → (𝑓‘𝑖) ⊆ 𝐵) |