| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj170 | Structured version Visualization version GIF version | ||
| Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj170 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anrot 1100 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
| 2 | df-3an 1089 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜑)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: bnj543 34907 bnj605 34921 bnj594 34926 bnj607 34930 bnj908 34945 bnj1173 35016 |
| Copyright terms: Public domain | W3C validator |