Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj170 Structured version   Visualization version   GIF version

Theorem bnj170 34173
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj170 ((𝜑𝜓𝜒) ↔ ((𝜓𝜒) ∧ 𝜑))

Proof of Theorem bnj170
StepHypRef Expression
1 3anrot 1099 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
2 df-3an 1088 . 2 ((𝜓𝜒𝜑) ↔ ((𝜓𝜒) ∧ 𝜑))
31, 2bitri 275 1 ((𝜑𝜓𝜒) ↔ ((𝜓𝜒) ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1088
This theorem is referenced by:  bnj543  34368  bnj605  34382  bnj594  34387  bnj607  34391  bnj908  34406  bnj1173  34477
  Copyright terms: Public domain W3C validator