Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1125 Structured version   Visualization version   GIF version

Theorem bnj1125 32372
 Description: Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1125 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))

Proof of Theorem bnj1125
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
2 bnj1127 32371 . . 3 (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → 𝑌𝐴)
323ad2ant3 1132 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → 𝑌𝐴)
4 bnj893 32308 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V)
543adant3 1129 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑋, 𝐴, 𝑅) ∈ V)
6 bnj1029 32348 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅))
763adant3 1129 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅))
8 simp3 1135 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → 𝑌 ∈ trCl(𝑋, 𝐴, 𝑅))
9 elisset 3455 . . . . 5 (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → ∃𝑦 𝑦 = 𝑌)
1093ad2ant3 1132 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → ∃𝑦 𝑦 = 𝑌)
11 df-bnj19 32075 . . . . . . . 8 ( TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅) ↔ ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
12 rsp 3173 . . . . . . . 8 (∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅) → (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)))
1311, 12sylbi 220 . . . . . . 7 ( TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅) → (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)))
147, 13syl 17 . . . . . 6 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)))
15 eleq1 2880 . . . . . . 7 (𝑦 = 𝑌 → (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ↔ 𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)))
16 bnj602 32295 . . . . . . . 8 (𝑦 = 𝑌 → pred(𝑦, 𝐴, 𝑅) = pred(𝑌, 𝐴, 𝑅))
1716sseq1d 3949 . . . . . . 7 (𝑦 = 𝑌 → ( pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ pred(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)))
1815, 17imbi12d 348 . . . . . 6 (𝑦 = 𝑌 → ((𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → pred(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))))
1914, 18syl5ib 247 . . . . 5 (𝑦 = 𝑌 → ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → pred(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))))
2019exlimiv 1931 . . . 4 (∃𝑦 𝑦 = 𝑌 → ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → pred(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))))
2110, 20mpcom 38 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → pred(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)))
228, 21mpd 15 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → pred(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
23 biid 264 . . 3 ((𝑅 FrSe 𝐴𝑌𝐴) ↔ (𝑅 FrSe 𝐴𝑌𝐴))
24 biid 264 . . 3 (( trCl(𝑋, 𝐴, 𝑅) ∈ V ∧ TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅) ∧ pred(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ( trCl(𝑋, 𝐴, 𝑅) ∈ V ∧ TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅) ∧ pred(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)))
2523, 24bnj1124 32368 . 2 (((𝑅 FrSe 𝐴𝑌𝐴) ∧ ( trCl(𝑋, 𝐴, 𝑅) ∈ V ∧ TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅) ∧ pred(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))) → trCl(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
261, 3, 5, 7, 22, 25syl23anc 1374 1 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ∃wex 1781   ∈ wcel 2112  ∀wral 3109  Vcvv 3444   ⊆ wss 3884   predc-bnj14 32066   FrSe w-bnj15 32070   trClc-bnj18 32072   TrFow-bnj19 32074 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-reg 9044  ax-inf2 9092 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-om 7565  df-1o 8089  df-bnj17 32065  df-bnj14 32067  df-bnj13 32069  df-bnj15 32071  df-bnj18 32073  df-bnj19 32075 This theorem is referenced by:  bnj1137  32375  bnj1136  32377  bnj1175  32384  bnj1408  32416  bnj1417  32421  bnj1452  32432
 Copyright terms: Public domain W3C validator