Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1137 Structured version   Visualization version   GIF version

Theorem bnj1137 33664
Description: Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1137.1 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
Assertion
Ref Expression
bnj1137 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo(𝐵, 𝐴, 𝑅))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem bnj1137
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 bnj1137.1 . . . . . 6 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
21eleq2i 2826 . . . . 5 (𝑣𝐵𝑣 ∈ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
3 elun 4109 . . . . 5 (𝑣 ∈ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ↔ (𝑣 ∈ pred(𝑋, 𝐴, 𝑅) ∨ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
42, 3bitri 275 . . . 4 (𝑣𝐵 ↔ (𝑣 ∈ pred(𝑋, 𝐴, 𝑅) ∨ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
5 bnj213 33551 . . . . . . . . 9 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴
65sseli 3941 . . . . . . . 8 (𝑣 ∈ pred(𝑋, 𝐴, 𝑅) → 𝑣𝐴)
7 bnj906 33599 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑣𝐴) → pred(𝑣, 𝐴, 𝑅) ⊆ trCl(𝑣, 𝐴, 𝑅))
87adantlr 714 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣𝐴) → pred(𝑣, 𝐴, 𝑅) ⊆ trCl(𝑣, 𝐴, 𝑅))
96, 8sylan2 594 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 ∈ pred(𝑋, 𝐴, 𝑅)) → pred(𝑣, 𝐴, 𝑅) ⊆ trCl(𝑣, 𝐴, 𝑅))
10 bnj906 33599 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
1110sselda 3945 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 ∈ pred(𝑋, 𝐴, 𝑅)) → 𝑣 ∈ trCl(𝑋, 𝐴, 𝑅))
12 bnj18eq1 33596 . . . . . . . . 9 (𝑦 = 𝑣 → trCl(𝑦, 𝐴, 𝑅) = trCl(𝑣, 𝐴, 𝑅))
1312ssiun2s 5009 . . . . . . . 8 (𝑣 ∈ trCl(𝑋, 𝐴, 𝑅) → trCl(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
1411, 13syl 17 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 ∈ pred(𝑋, 𝐴, 𝑅)) → trCl(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
159, 14sstrd 3955 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 ∈ pred(𝑋, 𝐴, 𝑅)) → pred(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
16 bnj1147 33663 . . . . . . . . . . 11 trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴
1716rgenw 3065 . . . . . . . . . 10 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴
18 iunss 5006 . . . . . . . . . 10 ( 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴 ↔ ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴)
1917, 18mpbir 230 . . . . . . . . 9 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴
2019sseli 3941 . . . . . . . 8 (𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) → 𝑣𝐴)
2120, 8sylan2 594 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → pred(𝑣, 𝐴, 𝑅) ⊆ trCl(𝑣, 𝐴, 𝑅))
22 bnj1125 33661 . . . . . . . . . . . 12 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
23223expia 1122 . . . . . . . . . . 11 ((𝑅 FrSe 𝐴𝑋𝐴) → (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)))
2423ralrimiv 3139 . . . . . . . . . 10 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
25 iunss 5006 . . . . . . . . . 10 ( 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
2624, 25sylibr 233 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
2726sselda 3945 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → 𝑣 ∈ trCl(𝑋, 𝐴, 𝑅))
2827, 13syl 17 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → trCl(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
2921, 28sstrd 3955 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → pred(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
3015, 29jaodan 957 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝑣 ∈ pred(𝑋, 𝐴, 𝑅) ∨ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))) → pred(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
31 ssun2 4134 . . . . . 6 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
3231, 1sseqtrri 3982 . . . . 5 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐵
3330, 32sstrdi 3957 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝑣 ∈ pred(𝑋, 𝐴, 𝑅) ∨ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))) → pred(𝑣, 𝐴, 𝑅) ⊆ 𝐵)
344, 33sylan2b 595 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣𝐵) → pred(𝑣, 𝐴, 𝑅) ⊆ 𝐵)
3534ralrimiva 3140 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑣𝐵 pred(𝑣, 𝐴, 𝑅) ⊆ 𝐵)
36 df-bnj19 33366 . 2 ( TrFo(𝐵, 𝐴, 𝑅) ↔ ∀𝑣𝐵 pred(𝑣, 𝐴, 𝑅) ⊆ 𝐵)
3735, 36sylibr 233 1 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo(𝐵, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 846   = wceq 1542  wcel 2107  wral 3061  cun 3909  wss 3911   ciun 4955   predc-bnj14 33357   FrSe w-bnj15 33361   trClc-bnj18 33363   TrFow-bnj19 33365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-reg 9533  ax-inf2 9582
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-om 7804  df-1o 8413  df-bnj17 33356  df-bnj14 33358  df-bnj13 33360  df-bnj15 33362  df-bnj18 33364  df-bnj19 33366
This theorem is referenced by:  bnj1136  33666
  Copyright terms: Public domain W3C validator