Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1137 Structured version   Visualization version   GIF version

Theorem bnj1137 35031
Description: Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1137.1 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
Assertion
Ref Expression
bnj1137 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo(𝐵, 𝐴, 𝑅))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem bnj1137
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 bnj1137.1 . . . . . 6 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
21eleq2i 2827 . . . . 5 (𝑣𝐵𝑣 ∈ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
3 elun 4133 . . . . 5 (𝑣 ∈ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ↔ (𝑣 ∈ pred(𝑋, 𝐴, 𝑅) ∨ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
42, 3bitri 275 . . . 4 (𝑣𝐵 ↔ (𝑣 ∈ pred(𝑋, 𝐴, 𝑅) ∨ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
5 bnj213 34918 . . . . . . . . 9 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴
65sseli 3959 . . . . . . . 8 (𝑣 ∈ pred(𝑋, 𝐴, 𝑅) → 𝑣𝐴)
7 bnj906 34966 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑣𝐴) → pred(𝑣, 𝐴, 𝑅) ⊆ trCl(𝑣, 𝐴, 𝑅))
87adantlr 715 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣𝐴) → pred(𝑣, 𝐴, 𝑅) ⊆ trCl(𝑣, 𝐴, 𝑅))
96, 8sylan2 593 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 ∈ pred(𝑋, 𝐴, 𝑅)) → pred(𝑣, 𝐴, 𝑅) ⊆ trCl(𝑣, 𝐴, 𝑅))
10 bnj906 34966 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
1110sselda 3963 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 ∈ pred(𝑋, 𝐴, 𝑅)) → 𝑣 ∈ trCl(𝑋, 𝐴, 𝑅))
12 bnj18eq1 34963 . . . . . . . . 9 (𝑦 = 𝑣 → trCl(𝑦, 𝐴, 𝑅) = trCl(𝑣, 𝐴, 𝑅))
1312ssiun2s 5029 . . . . . . . 8 (𝑣 ∈ trCl(𝑋, 𝐴, 𝑅) → trCl(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
1411, 13syl 17 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 ∈ pred(𝑋, 𝐴, 𝑅)) → trCl(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
159, 14sstrd 3974 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 ∈ pred(𝑋, 𝐴, 𝑅)) → pred(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
16 bnj1147 35030 . . . . . . . . . . 11 trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴
1716rgenw 3056 . . . . . . . . . 10 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴
18 iunss 5026 . . . . . . . . . 10 ( 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴 ↔ ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴)
1917, 18mpbir 231 . . . . . . . . 9 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴
2019sseli 3959 . . . . . . . 8 (𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) → 𝑣𝐴)
2120, 8sylan2 593 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → pred(𝑣, 𝐴, 𝑅) ⊆ trCl(𝑣, 𝐴, 𝑅))
22 bnj1125 35028 . . . . . . . . . . . 12 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
23223expia 1121 . . . . . . . . . . 11 ((𝑅 FrSe 𝐴𝑋𝐴) → (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)))
2423ralrimiv 3132 . . . . . . . . . 10 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
25 iunss 5026 . . . . . . . . . 10 ( 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
2624, 25sylibr 234 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
2726sselda 3963 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → 𝑣 ∈ trCl(𝑋, 𝐴, 𝑅))
2827, 13syl 17 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → trCl(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
2921, 28sstrd 3974 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → pred(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
3015, 29jaodan 959 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝑣 ∈ pred(𝑋, 𝐴, 𝑅) ∨ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))) → pred(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
31 ssun2 4159 . . . . . 6 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
3231, 1sseqtrri 4013 . . . . 5 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐵
3330, 32sstrdi 3976 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝑣 ∈ pred(𝑋, 𝐴, 𝑅) ∨ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))) → pred(𝑣, 𝐴, 𝑅) ⊆ 𝐵)
344, 33sylan2b 594 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣𝐵) → pred(𝑣, 𝐴, 𝑅) ⊆ 𝐵)
3534ralrimiva 3133 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑣𝐵 pred(𝑣, 𝐴, 𝑅) ⊆ 𝐵)
36 df-bnj19 34733 . 2 ( TrFo(𝐵, 𝐴, 𝑅) ↔ ∀𝑣𝐵 pred(𝑣, 𝐴, 𝑅) ⊆ 𝐵)
3735, 36sylibr 234 1 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo(𝐵, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3052  cun 3929  wss 3931   ciun 4972   predc-bnj14 34724   FrSe w-bnj15 34728   trClc-bnj18 34730   TrFow-bnj19 34732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-reg 9611  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1o 8485  df-bnj17 34723  df-bnj14 34725  df-bnj13 34727  df-bnj15 34729  df-bnj18 34731  df-bnj19 34733
This theorem is referenced by:  bnj1136  35033
  Copyright terms: Public domain W3C validator