Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1137 Structured version   Visualization version   GIF version

Theorem bnj1137 31662
Description: Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1137.1 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
Assertion
Ref Expression
bnj1137 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo(𝐵, 𝐴, 𝑅))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem bnj1137
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 bnj1137.1 . . . . . 6 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
21eleq2i 2850 . . . . 5 (𝑣𝐵𝑣 ∈ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
3 elun 3975 . . . . 5 (𝑣 ∈ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ↔ (𝑣 ∈ pred(𝑋, 𝐴, 𝑅) ∨ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
42, 3bitri 267 . . . 4 (𝑣𝐵 ↔ (𝑣 ∈ pred(𝑋, 𝐴, 𝑅) ∨ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
5 bnj213 31551 . . . . . . . . 9 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴
65sseli 3816 . . . . . . . 8 (𝑣 ∈ pred(𝑋, 𝐴, 𝑅) → 𝑣𝐴)
7 bnj906 31599 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑣𝐴) → pred(𝑣, 𝐴, 𝑅) ⊆ trCl(𝑣, 𝐴, 𝑅))
87adantlr 705 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣𝐴) → pred(𝑣, 𝐴, 𝑅) ⊆ trCl(𝑣, 𝐴, 𝑅))
96, 8sylan2 586 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 ∈ pred(𝑋, 𝐴, 𝑅)) → pred(𝑣, 𝐴, 𝑅) ⊆ trCl(𝑣, 𝐴, 𝑅))
10 bnj906 31599 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
1110sselda 3820 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 ∈ pred(𝑋, 𝐴, 𝑅)) → 𝑣 ∈ trCl(𝑋, 𝐴, 𝑅))
12 bnj18eq1 31596 . . . . . . . . 9 (𝑦 = 𝑣 → trCl(𝑦, 𝐴, 𝑅) = trCl(𝑣, 𝐴, 𝑅))
1312ssiun2s 4797 . . . . . . . 8 (𝑣 ∈ trCl(𝑋, 𝐴, 𝑅) → trCl(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
1411, 13syl 17 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 ∈ pred(𝑋, 𝐴, 𝑅)) → trCl(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
159, 14sstrd 3830 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 ∈ pred(𝑋, 𝐴, 𝑅)) → pred(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
16 bnj1147 31661 . . . . . . . . . . 11 trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴
1716rgenw 3105 . . . . . . . . . 10 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴
18 iunss 4794 . . . . . . . . . 10 ( 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴 ↔ ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴)
1917, 18mpbir 223 . . . . . . . . 9 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴
2019sseli 3816 . . . . . . . 8 (𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) → 𝑣𝐴)
2120, 8sylan2 586 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → pred(𝑣, 𝐴, 𝑅) ⊆ trCl(𝑣, 𝐴, 𝑅))
22 bnj1125 31659 . . . . . . . . . . . 12 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
23223expia 1111 . . . . . . . . . . 11 ((𝑅 FrSe 𝐴𝑋𝐴) → (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)))
2423ralrimiv 3146 . . . . . . . . . 10 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
25 iunss 4794 . . . . . . . . . 10 ( 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
2624, 25sylibr 226 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
2726sselda 3820 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → 𝑣 ∈ trCl(𝑋, 𝐴, 𝑅))
2827, 13syl 17 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → trCl(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
2921, 28sstrd 3830 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → pred(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
3015, 29jaodan 943 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝑣 ∈ pred(𝑋, 𝐴, 𝑅) ∨ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))) → pred(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
31 ssun2 3999 . . . . . 6 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
3231, 1sseqtr4i 3856 . . . . 5 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐵
3330, 32syl6ss 3832 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝑣 ∈ pred(𝑋, 𝐴, 𝑅) ∨ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))) → pred(𝑣, 𝐴, 𝑅) ⊆ 𝐵)
344, 33sylan2b 587 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣𝐵) → pred(𝑣, 𝐴, 𝑅) ⊆ 𝐵)
3534ralrimiva 3147 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑣𝐵 pred(𝑣, 𝐴, 𝑅) ⊆ 𝐵)
36 df-bnj19 31365 . 2 ( TrFo(𝐵, 𝐴, 𝑅) ↔ ∀𝑣𝐵 pred(𝑣, 𝐴, 𝑅) ⊆ 𝐵)
3735, 36sylibr 226 1 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo(𝐵, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wo 836   = wceq 1601  wcel 2106  wral 3089  cun 3789  wss 3791   ciun 4753   predc-bnj14 31356   FrSe w-bnj15 31360   trClc-bnj18 31362   TrFow-bnj19 31364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-reg 8786  ax-inf2 8835
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-om 7344  df-1o 7843  df-bnj17 31355  df-bnj14 31357  df-bnj13 31359  df-bnj15 31361  df-bnj18 31363  df-bnj19 31365
This theorem is referenced by:  bnj1136  31664
  Copyright terms: Public domain W3C validator