|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cadcoma | Structured version Visualization version GIF version | ||
| Description: Commutative law for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| cadcoma | ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ cadd(𝜓, 𝜑, 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 2 | xorcom 1514 | . . . 4 ⊢ ((𝜑 ⊻ 𝜓) ↔ (𝜓 ⊻ 𝜑)) | |
| 3 | 2 | anbi2i 623 | . . 3 ⊢ ((𝜒 ∧ (𝜑 ⊻ 𝜓)) ↔ (𝜒 ∧ (𝜓 ⊻ 𝜑))) | 
| 4 | 1, 3 | orbi12i 915 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓))) ↔ ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ (𝜓 ⊻ 𝜑)))) | 
| 5 | df-cad 1607 | . 2 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓)))) | |
| 6 | df-cad 1607 | . 2 ⊢ (cadd(𝜓, 𝜑, 𝜒) ↔ ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ (𝜓 ⊻ 𝜑)))) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ cadd(𝜓, 𝜑, 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 848 ⊻ wxo 1511 caddwcad 1606 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-xor 1512 df-cad 1607 | 
| This theorem is referenced by: cadrot 1614 sadcom 16500 | 
| Copyright terms: Public domain | W3C validator |