HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sshjval Structured version   Visualization version   GIF version

Theorem sshjval 29820
Description: Value of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
sshjval ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))

Proof of Theorem sshjval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hilex 29469 . . 3 ℋ ∈ V
21elpw2 5282 . 2 (𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ)
31elpw2 5282 . 2 (𝐵 ∈ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ)
4 uneq12 4102 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦) = (𝐴𝐵))
54fveq2d 6813 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (⊥‘(𝑥𝑦)) = (⊥‘(𝐴𝐵)))
65fveq2d 6813 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (⊥‘(⊥‘(𝑥𝑦))) = (⊥‘(⊥‘(𝐴𝐵))))
7 df-chj 29780 . . 3 = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
8 fvex 6822 . . 3 (⊥‘(⊥‘(𝐴𝐵))) ∈ V
96, 7, 8ovmpoa 7466 . 2 ((𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
102, 3, 9syl2anbr 599 1 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cun 3894  wss 3896  𝒫 cpw 4543  cfv 6463  (class class class)co 7313  chba 29389  cort 29400   chj 29403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pr 5365  ax-hilex 29469
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3726  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-br 5086  df-opab 5148  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-iota 6415  df-fun 6465  df-fv 6471  df-ov 7316  df-oprab 7317  df-mpo 7318  df-chj 29780
This theorem is referenced by:  shjval  29821  sshjval3  29824  sshjcl  29825  sshjval2  29881  ssjo  29917  sshhococi  30016
  Copyright terms: Public domain W3C validator