| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > sshjval | Structured version Visualization version GIF version | ||
| Description: Value of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sshjval | ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex 30934 | . . 3 ⊢ ℋ ∈ V | |
| 2 | 1 | elpw2 5291 | . 2 ⊢ (𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ) |
| 3 | 1 | elpw2 5291 | . 2 ⊢ (𝐵 ∈ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ) |
| 4 | uneq12 4128 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
| 5 | 4 | fveq2d 6864 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (⊥‘(𝑥 ∪ 𝑦)) = (⊥‘(𝐴 ∪ 𝐵))) |
| 6 | 5 | fveq2d 6864 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (⊥‘(⊥‘(𝑥 ∪ 𝑦))) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
| 7 | df-chj 31245 | . . 3 ⊢ ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) | |
| 8 | fvex 6873 | . . 3 ⊢ (⊥‘(⊥‘(𝐴 ∪ 𝐵))) ∈ V | |
| 9 | 6, 7, 8 | ovmpoa 7546 | . 2 ⊢ ((𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
| 10 | 2, 3, 9 | syl2anbr 599 | 1 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3914 ⊆ wss 3916 𝒫 cpw 4565 ‘cfv 6513 (class class class)co 7389 ℋchba 30854 ⊥cort 30865 ∨ℋ chj 30868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-hilex 30934 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-chj 31245 |
| This theorem is referenced by: shjval 31286 sshjval3 31289 sshjcl 31290 sshjval2 31346 ssjo 31382 sshhococi 31481 |
| Copyright terms: Public domain | W3C validator |