HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sshjval Structured version   Visualization version   GIF version

Theorem sshjval 31297
Description: Value of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
sshjval ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))

Proof of Theorem sshjval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hilex 30946 . . 3 ℋ ∈ V
21elpw2 5314 . 2 (𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ)
31elpw2 5314 . 2 (𝐵 ∈ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ)
4 uneq12 4143 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦) = (𝐴𝐵))
54fveq2d 6890 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (⊥‘(𝑥𝑦)) = (⊥‘(𝐴𝐵)))
65fveq2d 6890 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (⊥‘(⊥‘(𝑥𝑦))) = (⊥‘(⊥‘(𝐴𝐵))))
7 df-chj 31257 . . 3 = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
8 fvex 6899 . . 3 (⊥‘(⊥‘(𝐴𝐵))) ∈ V
96, 7, 8ovmpoa 7570 . 2 ((𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
102, 3, 9syl2anbr 599 1 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cun 3929  wss 3931  𝒫 cpw 4580  cfv 6541  (class class class)co 7413  chba 30866  cort 30877   chj 30880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-hilex 30946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-chj 31257
This theorem is referenced by:  shjval  31298  sshjval3  31301  sshjcl  31302  sshjval2  31358  ssjo  31394  sshhococi  31493
  Copyright terms: Public domain W3C validator