HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sshjval Structured version   Visualization version   GIF version

Theorem sshjval 31180
Description: Value of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
sshjval ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))

Proof of Theorem sshjval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hilex 30829 . . 3 ℋ ∈ V
21elpw2 5351 . 2 (𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ)
31elpw2 5351 . 2 (𝐵 ∈ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ)
4 uneq12 4159 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦) = (𝐴𝐵))
54fveq2d 6906 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (⊥‘(𝑥𝑦)) = (⊥‘(𝐴𝐵)))
65fveq2d 6906 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (⊥‘(⊥‘(𝑥𝑦))) = (⊥‘(⊥‘(𝐴𝐵))))
7 df-chj 31140 . . 3 = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
8 fvex 6915 . . 3 (⊥‘(⊥‘(𝐴𝐵))) ∈ V
96, 7, 8ovmpoa 7582 . 2 ((𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
102, 3, 9syl2anbr 597 1 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cun 3947  wss 3949  𝒫 cpw 4606  cfv 6553  (class class class)co 7426  chba 30749  cort 30760   chj 30763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-hilex 30829
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-iota 6505  df-fun 6555  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-chj 31140
This theorem is referenced by:  shjval  31181  sshjval3  31184  sshjcl  31185  sshjval2  31241  ssjo  31277  sshhococi  31376
  Copyright terms: Public domain W3C validator