| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > sshjval | Structured version Visualization version GIF version | ||
| Description: Value of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sshjval | ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex 30969 | . . 3 ⊢ ℋ ∈ V | |
| 2 | 1 | elpw2 5270 | . 2 ⊢ (𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ) |
| 3 | 1 | elpw2 5270 | . 2 ⊢ (𝐵 ∈ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ) |
| 4 | uneq12 4111 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
| 5 | 4 | fveq2d 6821 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (⊥‘(𝑥 ∪ 𝑦)) = (⊥‘(𝐴 ∪ 𝐵))) |
| 6 | 5 | fveq2d 6821 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (⊥‘(⊥‘(𝑥 ∪ 𝑦))) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
| 7 | df-chj 31280 | . . 3 ⊢ ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) | |
| 8 | fvex 6830 | . . 3 ⊢ (⊥‘(⊥‘(𝐴 ∪ 𝐵))) ∈ V | |
| 9 | 6, 7, 8 | ovmpoa 7496 | . 2 ⊢ ((𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
| 10 | 2, 3, 9 | syl2anbr 599 | 1 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∪ cun 3898 ⊆ wss 3900 𝒫 cpw 4548 ‘cfv 6477 (class class class)co 7341 ℋchba 30889 ⊥cort 30900 ∨ℋ chj 30903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-hilex 30969 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6433 df-fun 6479 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-chj 31280 |
| This theorem is referenced by: shjval 31321 sshjval3 31324 sshjcl 31325 sshjval2 31381 ssjo 31417 sshhococi 31516 |
| Copyright terms: Public domain | W3C validator |