HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chjval Structured version   Visualization version   GIF version

Theorem chjval 30123
Description: Value of join in C. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
chjval ((𝐴C𝐵C ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))

Proof of Theorem chjval
StepHypRef Expression
1 chsh 29995 . 2 (𝐴C𝐴S )
2 chsh 29995 . 2 (𝐵C𝐵S )
3 shjval 30122 . 2 ((𝐴S𝐵S ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
41, 2, 3syl2an 596 1 ((𝐴C𝐵C ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cun 3906  cfv 6493  (class class class)co 7351   S csh 29699   C cch 29700  cort 29701   chj 29704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pr 5382  ax-hilex 29770
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-sbc 3738  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-br 5104  df-opab 5166  df-id 5529  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6445  df-fun 6495  df-fv 6501  df-ov 7354  df-oprab 7355  df-mpo 7356  df-sh 29978  df-ch 29992  df-chj 30081
This theorem is referenced by:  chjvali  30124
  Copyright terms: Public domain W3C validator