Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chjcl | Structured version Visualization version GIF version |
Description: Closure of join in Cℋ. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chjcl | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) ∈ Cℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh 29565 | . 2 ⊢ (𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
2 | chsh 29565 | . 2 ⊢ (𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) | |
3 | shjcl 29697 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) ∈ Cℋ ) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) ∈ Cℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7268 Sℋ csh 29269 Cℋ cch 29270 ∨ℋ chj 29274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 ax-addf 10934 ax-mulf 10935 ax-hilex 29340 ax-hfvadd 29341 ax-hvcom 29342 ax-hvass 29343 ax-hv0cl 29344 ax-hvaddid 29345 ax-hfvmul 29346 ax-hvmulid 29347 ax-hvmulass 29348 ax-hvdistr1 29349 ax-hvdistr2 29350 ax-hvmul0 29351 ax-hfi 29420 ax-his1 29423 ax-his2 29424 ax-his3 29425 ax-his4 29426 ax-hcompl 29543 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-om 7701 df-1st 7817 df-2nd 7818 df-supp 7962 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-er 8472 df-map 8591 df-pm 8592 df-ixp 8660 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fsupp 9090 df-fi 9131 df-sup 9162 df-inf 9163 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-q 12671 df-rp 12713 df-xneg 12830 df-xadd 12831 df-xmul 12832 df-ioo 13065 df-icc 13068 df-fz 13222 df-fzo 13365 df-seq 13703 df-exp 13764 df-hash 14026 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-clim 15178 df-sum 15379 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-starv 16958 df-sca 16959 df-vsca 16960 df-ip 16961 df-tset 16962 df-ple 16963 df-ds 16965 df-unif 16966 df-hom 16967 df-cco 16968 df-rest 17114 df-topn 17115 df-0g 17133 df-gsum 17134 df-topgen 17135 df-pt 17136 df-prds 17139 df-xrs 17194 df-qtop 17199 df-imas 17200 df-xps 17202 df-mre 17276 df-mrc 17277 df-acs 17279 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-submnd 18412 df-mulg 18682 df-cntz 18904 df-cmn 19369 df-psmet 20570 df-xmet 20571 df-met 20572 df-bl 20573 df-mopn 20574 df-cnfld 20579 df-top 22024 df-topon 22041 df-topsp 22063 df-bases 22077 df-cn 22359 df-cnp 22360 df-lm 22361 df-haus 22447 df-tx 22694 df-hmeo 22887 df-xms 23454 df-ms 23455 df-tms 23456 df-cau 24401 df-grpo 28834 df-gid 28835 df-ginv 28836 df-gdiv 28837 df-ablo 28886 df-vc 28900 df-nv 28933 df-va 28936 df-ba 28937 df-sm 28938 df-0v 28939 df-vs 28940 df-nmcv 28941 df-ims 28942 df-dip 29042 df-hnorm 29309 df-hvsub 29312 df-hlim 29313 df-hcau 29314 df-sh 29548 df-ch 29562 df-oc 29593 df-chj 29651 |
This theorem is referenced by: chj4 29876 cm0 29950 pjoml5 29954 fh1 29959 fh2 29960 cm2j 29961 spansnscl 29989 hstle 30571 strlem3a 30593 hstrlem3a 30601 spansncv2 30634 mdbr2 30637 dmdmd 30641 dmdbr3 30646 dmdbr4 30647 dmdbr5 30649 mdsl1i 30662 mdsl2i 30663 mdslmd1i 30670 mdexchi 30676 cvdmd 30678 chcv1 30696 cvati 30707 cvexchlem 30709 atcv0eq 30720 atexch 30722 atomli 30723 atcvatlem 30726 atcvat2i 30728 chirredlem3 30733 atcvat3i 30737 atcvat4i 30738 mdsymlem1 30744 mdsymlem3 30746 mdsymlem5 30748 mdsymlem6 30749 dmdbr5ati 30763 |
Copyright terms: Public domain | W3C validator |