Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-clnbgr Structured version   Visualization version   GIF version

Definition df-clnbgr 47693
Description: Define the closed neighborhood resp. the class of all neighbors of a vertex (in a graph) and the vertex itself, see definition in section I.1 of [Bollobas] p. 3. The closed neighborhood of a vertex are all vertices which are connected with this vertex by an edge and the vertex itself (in contrast to an open neighborhood, see df-nbgr 29368). Alternatively, a closed neighborhood of a vertex could have been defined as its open neighborhood enhanced by the vertex itself, see dfclnbgr4 47698. This definition is applicable even for arbitrary hypergraphs. (Contributed by AV, 7-May-2025.)
Assertion
Ref Expression
df-clnbgr ClNeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}))
Distinct variable group:   𝑒,𝑔,𝑛,𝑣

Detailed syntax breakdown of Definition df-clnbgr
StepHypRef Expression
1 cclnbgr 47692 . 2 class ClNeighbVtx
2 vg . . 3 setvar 𝑔
3 vv . . 3 setvar 𝑣
4 cvv 3488 . . 3 class V
52cv 1536 . . . 4 class 𝑔
6 cvtx 29031 . . . 4 class Vtx
75, 6cfv 6573 . . 3 class (Vtx‘𝑔)
83cv 1536 . . . . 5 class 𝑣
98csn 4648 . . . 4 class {𝑣}
10 vn . . . . . . . . 9 setvar 𝑛
1110cv 1536 . . . . . . . 8 class 𝑛
128, 11cpr 4650 . . . . . . 7 class {𝑣, 𝑛}
13 ve . . . . . . . 8 setvar 𝑒
1413cv 1536 . . . . . . 7 class 𝑒
1512, 14wss 3976 . . . . . 6 wff {𝑣, 𝑛} ⊆ 𝑒
16 cedg 29082 . . . . . . 7 class Edg
175, 16cfv 6573 . . . . . 6 class (Edg‘𝑔)
1815, 13, 17wrex 3076 . . . . 5 wff 𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒
1918, 10, 7crab 3443 . . . 4 class {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}
209, 19cun 3974 . . 3 class ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒})
212, 3, 4, 7, 20cmpo 7450 . 2 class (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}))
221, 21wceq 1537 1 wff ClNeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}))
Colors of variables: wff setvar class
This definition is referenced by:  clnbgrprc0  47694  clnbgrcl  47695  clnbgrval  47696  clnbgrnvtx0  47700
  Copyright terms: Public domain W3C validator