| Step | Hyp | Ref
| Expression |
| 1 | | df-clnbgr 47800 |
. 2
⊢
ClNeighbVtx = (𝑔 ∈ V,
𝑣 ∈ (Vtx‘𝑔) ↦ ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒})) |
| 2 | | clnbgrval.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
| 3 | 2 | 1vgrex 28986 |
. . 3
⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
| 4 | | fveq2 6881 |
. . . . . . 7
⊢ (𝐺 = 𝑔 → (Vtx‘𝐺) = (Vtx‘𝑔)) |
| 5 | 4 | eqcoms 2744 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (Vtx‘𝐺) = (Vtx‘𝑔)) |
| 6 | 2, 5 | eqtrid 2783 |
. . . . 5
⊢ (𝑔 = 𝐺 → 𝑉 = (Vtx‘𝑔)) |
| 7 | 6 | eleq2d 2821 |
. . . 4
⊢ (𝑔 = 𝐺 → (𝑁 ∈ 𝑉 ↔ 𝑁 ∈ (Vtx‘𝑔))) |
| 8 | 7 | biimpac 478 |
. . 3
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑔 = 𝐺) → 𝑁 ∈ (Vtx‘𝑔)) |
| 9 | | vsnex 5409 |
. . . . 5
⊢ {𝑣} ∈ V |
| 10 | 9 | a1i 11 |
. . . 4
⊢ ((𝑁 ∈ 𝑉 ∧ (𝑔 = 𝐺 ∧ 𝑣 = 𝑁)) → {𝑣} ∈ V) |
| 11 | | fvex 6894 |
. . . . 5
⊢
(Vtx‘𝑔) ∈
V |
| 12 | | rabexg 5312 |
. . . . 5
⊢
((Vtx‘𝑔)
∈ V → {𝑛 ∈
(Vtx‘𝑔) ∣
∃𝑒 ∈
(Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒} ∈ V) |
| 13 | 11, 12 | mp1i 13 |
. . . 4
⊢ ((𝑁 ∈ 𝑉 ∧ (𝑔 = 𝐺 ∧ 𝑣 = 𝑁)) → {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒} ∈ V) |
| 14 | 10, 13 | unexd 7753 |
. . 3
⊢ ((𝑁 ∈ 𝑉 ∧ (𝑔 = 𝐺 ∧ 𝑣 = 𝑁)) → ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) ∈ V) |
| 15 | | sneq 4616 |
. . . . . 6
⊢ (𝑣 = 𝑁 → {𝑣} = {𝑁}) |
| 16 | 15 | adantl 481 |
. . . . 5
⊢ ((𝑔 = 𝐺 ∧ 𝑣 = 𝑁) → {𝑣} = {𝑁}) |
| 17 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) |
| 18 | 17, 2 | eqtr4di 2789 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
| 19 | 18 | adantr 480 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ 𝑣 = 𝑁) → (Vtx‘𝑔) = 𝑉) |
| 20 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (Edg‘𝑔) = (Edg‘𝐺)) |
| 21 | | clnbgrval.e |
. . . . . . . . 9
⊢ 𝐸 = (Edg‘𝐺) |
| 22 | 20, 21 | eqtr4di 2789 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (Edg‘𝑔) = 𝐸) |
| 23 | 22 | adantr 480 |
. . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ 𝑣 = 𝑁) → (Edg‘𝑔) = 𝐸) |
| 24 | | preq1 4714 |
. . . . . . . . 9
⊢ (𝑣 = 𝑁 → {𝑣, 𝑛} = {𝑁, 𝑛}) |
| 25 | 24 | sseq1d 3995 |
. . . . . . . 8
⊢ (𝑣 = 𝑁 → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ 𝑒)) |
| 26 | 25 | adantl 481 |
. . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ 𝑣 = 𝑁) → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ 𝑒)) |
| 27 | 23, 26 | rexeqbidv 3330 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ 𝑣 = 𝑁) → (∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒)) |
| 28 | 19, 27 | rabeqbidv 3439 |
. . . . 5
⊢ ((𝑔 = 𝐺 ∧ 𝑣 = 𝑁) → {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒} = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒}) |
| 29 | 16, 28 | uneq12d 4149 |
. . . 4
⊢ ((𝑔 = 𝐺 ∧ 𝑣 = 𝑁) → ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒})) |
| 30 | 29 | adantl 481 |
. . 3
⊢ ((𝑁 ∈ 𝑉 ∧ (𝑔 = 𝐺 ∧ 𝑣 = 𝑁)) → ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒})) |
| 31 | 3, 8, 14, 30 | ovmpodv2 7570 |
. 2
⊢ (𝑁 ∈ 𝑉 → ( ClNeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒})) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒}))) |
| 32 | 1, 31 | mpi 20 |
1
⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒})) |