Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgrval Structured version   Visualization version   GIF version

Theorem clnbgrval 47696
Description: The closed neighborhood of a vertex 𝑉 in a graph 𝐺. (Contributed by AV, 7-May-2025.)
Hypotheses
Ref Expression
clnbgrval.v 𝑉 = (Vtx‘𝐺)
clnbgrval.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clnbgrval (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺,𝑛   𝑒,𝑁,𝑛   𝑒,𝑉,𝑛
Allowed substitution hint:   𝐸(𝑛)

Proof of Theorem clnbgrval
Dummy variables 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-clnbgr 47693 . 2 ClNeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}))
2 clnbgrval.v . . . 4 𝑉 = (Vtx‘𝐺)
321vgrex 29037 . . 3 (𝑁𝑉𝐺 ∈ V)
4 fveq2 6920 . . . . . . 7 (𝐺 = 𝑔 → (Vtx‘𝐺) = (Vtx‘𝑔))
54eqcoms 2748 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝐺) = (Vtx‘𝑔))
62, 5eqtrid 2792 . . . . 5 (𝑔 = 𝐺𝑉 = (Vtx‘𝑔))
76eleq2d 2830 . . . 4 (𝑔 = 𝐺 → (𝑁𝑉𝑁 ∈ (Vtx‘𝑔)))
87biimpac 478 . . 3 ((𝑁𝑉𝑔 = 𝐺) → 𝑁 ∈ (Vtx‘𝑔))
9 vsnex 5449 . . . . 5 {𝑣} ∈ V
109a1i 11 . . . 4 ((𝑁𝑉 ∧ (𝑔 = 𝐺𝑣 = 𝑁)) → {𝑣} ∈ V)
11 fvex 6933 . . . . 5 (Vtx‘𝑔) ∈ V
12 rabexg 5355 . . . . 5 ((Vtx‘𝑔) ∈ V → {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒} ∈ V)
1311, 12mp1i 13 . . . 4 ((𝑁𝑉 ∧ (𝑔 = 𝐺𝑣 = 𝑁)) → {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒} ∈ V)
1410, 13unexd 7789 . . 3 ((𝑁𝑉 ∧ (𝑔 = 𝐺𝑣 = 𝑁)) → ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) ∈ V)
15 sneq 4658 . . . . . 6 (𝑣 = 𝑁 → {𝑣} = {𝑁})
1615adantl 481 . . . . 5 ((𝑔 = 𝐺𝑣 = 𝑁) → {𝑣} = {𝑁})
17 fveq2 6920 . . . . . . . 8 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
1817, 2eqtr4di 2798 . . . . . . 7 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
1918adantr 480 . . . . . 6 ((𝑔 = 𝐺𝑣 = 𝑁) → (Vtx‘𝑔) = 𝑉)
20 fveq2 6920 . . . . . . . . 9 (𝑔 = 𝐺 → (Edg‘𝑔) = (Edg‘𝐺))
21 clnbgrval.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
2220, 21eqtr4di 2798 . . . . . . . 8 (𝑔 = 𝐺 → (Edg‘𝑔) = 𝐸)
2322adantr 480 . . . . . . 7 ((𝑔 = 𝐺𝑣 = 𝑁) → (Edg‘𝑔) = 𝐸)
24 preq1 4758 . . . . . . . . 9 (𝑣 = 𝑁 → {𝑣, 𝑛} = {𝑁, 𝑛})
2524sseq1d 4040 . . . . . . . 8 (𝑣 = 𝑁 → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ 𝑒))
2625adantl 481 . . . . . . 7 ((𝑔 = 𝐺𝑣 = 𝑁) → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ 𝑒))
2723, 26rexeqbidv 3355 . . . . . 6 ((𝑔 = 𝐺𝑣 = 𝑁) → (∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒))
2819, 27rabeqbidv 3462 . . . . 5 ((𝑔 = 𝐺𝑣 = 𝑁) → {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒} = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒})
2916, 28uneq12d 4192 . . . 4 ((𝑔 = 𝐺𝑣 = 𝑁) → ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}))
3029adantl 481 . . 3 ((𝑁𝑉 ∧ (𝑔 = 𝐺𝑣 = 𝑁)) → ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}))
313, 8, 14, 30ovmpodv2 7608 . 2 (𝑁𝑉 → ( ClNeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒})) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒})))
321, 31mpi 20 1 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  Vcvv 3488  cun 3974  wss 3976  {csn 4648  {cpr 4650  cfv 6573  (class class class)co 7448  cmpo 7450  Vtxcvtx 29031  Edgcedg 29082   ClNeighbVtx cclnbgr 47692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-clnbgr 47693
This theorem is referenced by:  dfclnbgr2  47697  dfclnbgr3  47699  clnbgrel  47701
  Copyright terms: Public domain W3C validator