| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clnbgrprc0 | Structured version Visualization version GIF version | ||
| Description: The closed neighborhood is empty if the graph 𝐺 or the vertex 𝑁 are proper classes. (Contributed by AV, 7-May-2025.) |
| Ref | Expression |
|---|---|
| clnbgrprc0 | ⊢ (¬ (𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 ClNeighbVtx 𝑁) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clnbgr 47850 | . . 3 ⊢ ClNeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒})) | |
| 2 | 1 | reldmmpo 7475 | . 2 ⊢ Rel dom ClNeighbVtx |
| 3 | 2 | ovprc 7379 | 1 ⊢ (¬ (𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 ClNeighbVtx 𝑁) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {crab 3395 Vcvv 3436 ∪ cun 3895 ⊆ wss 3897 ∅c0 4278 {csn 4571 {cpr 4573 ‘cfv 6476 (class class class)co 7341 Vtxcvtx 28969 Edgcedg 29020 ClNeighbVtx cclnbgr 47849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-dm 5621 df-iota 6432 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-clnbgr 47850 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |