![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clnbgrprc0 | Structured version Visualization version GIF version |
Description: The closed neighborhood is empty if the graph 𝐺 or the vertex 𝑁 are proper classes. (Contributed by AV, 7-May-2025.) |
Ref | Expression |
---|---|
clnbgrprc0 | ⊢ (¬ (𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 ClNeighbVtx 𝑁) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clnbgr 47693 | . . 3 ⊢ ClNeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒})) | |
2 | 1 | reldmmpo 7584 | . 2 ⊢ Rel dom ClNeighbVtx |
3 | 2 | ovprc 7486 | 1 ⊢ (¬ (𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 ClNeighbVtx 𝑁) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 {crab 3443 Vcvv 3488 ∪ cun 3974 ⊆ wss 3976 ∅c0 4352 {csn 4648 {cpr 4650 ‘cfv 6573 (class class class)co 7448 Vtxcvtx 29031 Edgcedg 29082 ClNeighbVtx cclnbgr 47692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-dm 5710 df-iota 6525 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-clnbgr 47693 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |