| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfclnbgr4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the closed neighborhood of a vertex as union of the vertex with its open neighborhood. (Contributed by AV, 8-May-2025.) |
| Ref | Expression |
|---|---|
| dfclnbgr4.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| dfclnbgr4 | ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfclnbgr4.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 3 | 1, 2 | dfclnbgr2 47821 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)})) |
| 4 | undif2 4440 | . . . 4 ⊢ ({𝑁} ∪ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ∖ {𝑁})) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) | |
| 5 | rabdif 4284 | . . . . 5 ⊢ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ∖ {𝑁}) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} | |
| 6 | 5 | uneq2i 4128 | . . . 4 ⊢ ({𝑁} ∪ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ∖ {𝑁})) = ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
| 7 | 4, 6 | eqtr3i 2754 | . . 3 ⊢ ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) = ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
| 8 | 1, 2 | dfnbgr2 29264 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
| 9 | 8 | eqcomd 2735 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} = (𝐺 NeighbVtx 𝑁)) |
| 10 | 9 | uneq2d 4131 | . . 3 ⊢ (𝑁 ∈ 𝑉 → ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) |
| 11 | 7, 10 | eqtrid 2776 | . 2 ⊢ (𝑁 ∈ 𝑉 → ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) |
| 12 | 3, 11 | eqtrd 2764 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3405 ∖ cdif 3911 ∪ cun 3912 {csn 4589 ‘cfv 6511 (class class class)co 7387 Vtxcvtx 28923 Edgcedg 28974 NeighbVtx cnbgr 29259 ClNeighbVtx cclnbgr 47816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-nbgr 29260 df-clnbgr 47817 |
| This theorem is referenced by: elclnbgrelnbgr 47823 clnbupgr 47831 clnbgr0edg 47834 edgusgrclnbfin 47839 stgrclnbgr0 47961 isubgr3stgrlem1 47962 |
| Copyright terms: Public domain | W3C validator |