![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfclnbgr4 | Structured version Visualization version GIF version |
Description: Alternate definition of the closed neighborhood of a vertex as union of the vertex with its open neighborhood. (Contributed by AV, 8-May-2025.) |
Ref | Expression |
---|---|
dfclnbgr4.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
dfclnbgr4 | ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclnbgr4.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eqid 2735 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | dfclnbgr2 47748 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)})) |
4 | undif2 4483 | . . . 4 ⊢ ({𝑁} ∪ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ∖ {𝑁})) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) | |
5 | rabdif 4327 | . . . . 5 ⊢ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ∖ {𝑁}) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} | |
6 | 5 | uneq2i 4175 | . . . 4 ⊢ ({𝑁} ∪ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ∖ {𝑁})) = ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
7 | 4, 6 | eqtr3i 2765 | . . 3 ⊢ ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) = ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
8 | 1, 2 | dfnbgr2 29369 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
9 | 8 | eqcomd 2741 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} = (𝐺 NeighbVtx 𝑁)) |
10 | 9 | uneq2d 4178 | . . 3 ⊢ (𝑁 ∈ 𝑉 → ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) |
11 | 7, 10 | eqtrid 2787 | . 2 ⊢ (𝑁 ∈ 𝑉 → ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) |
12 | 3, 11 | eqtrd 2775 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 {crab 3433 ∖ cdif 3960 ∪ cun 3961 {csn 4631 ‘cfv 6563 (class class class)co 7431 Vtxcvtx 29028 Edgcedg 29079 NeighbVtx cnbgr 29364 ClNeighbVtx cclnbgr 47743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-nbgr 29365 df-clnbgr 47744 |
This theorem is referenced by: elclnbgrelnbgr 47750 clnbupgr 47758 clnbgr0edg 47761 edgusgrclnbfin 47766 stgrclnbgr0 47868 isubgr3stgrlem1 47869 |
Copyright terms: Public domain | W3C validator |