Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfclnbgr4 Structured version   Visualization version   GIF version

Theorem dfclnbgr4 47822
Description: Alternate definition of the closed neighborhood of a vertex as union of the vertex with its open neighborhood. (Contributed by AV, 8-May-2025.)
Hypothesis
Ref Expression
dfclnbgr4.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
dfclnbgr4 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))

Proof of Theorem dfclnbgr4
Dummy variables 𝑒 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfclnbgr4.v . . 3 𝑉 = (Vtx‘𝐺)
2 eqid 2729 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
31, 2dfclnbgr2 47821 . 2 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)}))
4 undif2 4440 . . . 4 ({𝑁} ∪ ({𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)} ∖ {𝑁})) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)})
5 rabdif 4284 . . . . 5 ({𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)} ∖ {𝑁}) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)}
65uneq2i 4128 . . . 4 ({𝑁} ∪ ({𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)} ∖ {𝑁})) = ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)})
74, 6eqtr3i 2754 . . 3 ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)}) = ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)})
81, 2dfnbgr2 29264 . . . . 5 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)})
98eqcomd 2735 . . . 4 (𝑁𝑉 → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)} = (𝐺 NeighbVtx 𝑁))
109uneq2d 4131 . . 3 (𝑁𝑉 → ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)}) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))
117, 10eqtrid 2776 . 2 (𝑁𝑉 → ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)}) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))
123, 11eqtrd 2764 1 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3405  cdif 3911  cun 3912  {csn 4589  cfv 6511  (class class class)co 7387  Vtxcvtx 28923  Edgcedg 28974   NeighbVtx cnbgr 29259   ClNeighbVtx cclnbgr 47816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-nbgr 29260  df-clnbgr 47817
This theorem is referenced by:  elclnbgrelnbgr  47823  clnbupgr  47831  clnbgr0edg  47834  edgusgrclnbfin  47839  stgrclnbgr0  47961  isubgr3stgrlem1  47962
  Copyright terms: Public domain W3C validator