|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfclnbgr4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the closed neighborhood of a vertex as union of the vertex with its open neighborhood. (Contributed by AV, 8-May-2025.) | 
| Ref | Expression | 
|---|---|
| dfclnbgr4.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| Ref | Expression | 
|---|---|
| dfclnbgr4 | ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfclnbgr4.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eqid 2736 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 3 | 1, 2 | dfclnbgr2 47815 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)})) | 
| 4 | undif2 4476 | . . . 4 ⊢ ({𝑁} ∪ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ∖ {𝑁})) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) | |
| 5 | rabdif 4320 | . . . . 5 ⊢ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ∖ {𝑁}) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} | |
| 6 | 5 | uneq2i 4164 | . . . 4 ⊢ ({𝑁} ∪ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ∖ {𝑁})) = ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) | 
| 7 | 4, 6 | eqtr3i 2766 | . . 3 ⊢ ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) = ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) | 
| 8 | 1, 2 | dfnbgr2 29355 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) | 
| 9 | 8 | eqcomd 2742 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} = (𝐺 NeighbVtx 𝑁)) | 
| 10 | 9 | uneq2d 4167 | . . 3 ⊢ (𝑁 ∈ 𝑉 → ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) | 
| 11 | 7, 10 | eqtrid 2788 | . 2 ⊢ (𝑁 ∈ 𝑉 → ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) | 
| 12 | 3, 11 | eqtrd 2776 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 {crab 3435 ∖ cdif 3947 ∪ cun 3948 {csn 4625 ‘cfv 6560 (class class class)co 7432 Vtxcvtx 29014 Edgcedg 29065 NeighbVtx cnbgr 29350 ClNeighbVtx cclnbgr 47810 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-nbgr 29351 df-clnbgr 47811 | 
| This theorem is referenced by: elclnbgrelnbgr 47817 clnbupgr 47825 clnbgr0edg 47828 edgusgrclnbfin 47833 stgrclnbgr0 47937 isubgr3stgrlem1 47938 | 
| Copyright terms: Public domain | W3C validator |