Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfclnbgr4 Structured version   Visualization version   GIF version

Theorem dfclnbgr4 47805
Description: Alternate definition of the closed neighborhood of a vertex as union of the vertex with its open neighborhood. (Contributed by AV, 8-May-2025.)
Hypothesis
Ref Expression
dfclnbgr4.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
dfclnbgr4 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))

Proof of Theorem dfclnbgr4
Dummy variables 𝑒 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfclnbgr4.v . . 3 𝑉 = (Vtx‘𝐺)
2 eqid 2736 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
31, 2dfclnbgr2 47804 . 2 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)}))
4 undif2 4457 . . . 4 ({𝑁} ∪ ({𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)} ∖ {𝑁})) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)})
5 rabdif 4301 . . . . 5 ({𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)} ∖ {𝑁}) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)}
65uneq2i 4145 . . . 4 ({𝑁} ∪ ({𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)} ∖ {𝑁})) = ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)})
74, 6eqtr3i 2761 . . 3 ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)}) = ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)})
81, 2dfnbgr2 29321 . . . . 5 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)})
98eqcomd 2742 . . . 4 (𝑁𝑉 → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)} = (𝐺 NeighbVtx 𝑁))
109uneq2d 4148 . . 3 (𝑁𝑉 → ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)}) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))
117, 10eqtrid 2783 . 2 (𝑁𝑉 → ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)}) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))
123, 11eqtrd 2771 1 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3061  {crab 3420  cdif 3928  cun 3929  {csn 4606  cfv 6536  (class class class)co 7410  Vtxcvtx 28980  Edgcedg 29031   NeighbVtx cnbgr 29316   ClNeighbVtx cclnbgr 47799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-nbgr 29317  df-clnbgr 47800
This theorem is referenced by:  elclnbgrelnbgr  47806  clnbupgr  47814  clnbgr0edg  47817  edgusgrclnbfin  47822  stgrclnbgr0  47944  isubgr3stgrlem1  47945
  Copyright terms: Public domain W3C validator