| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfclnbgr4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the closed neighborhood of a vertex as union of the vertex with its open neighborhood. (Contributed by AV, 8-May-2025.) |
| Ref | Expression |
|---|---|
| dfclnbgr4.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| dfclnbgr4 | ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfclnbgr4.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eqid 2731 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 3 | 1, 2 | dfclnbgr2 47933 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)})) |
| 4 | undif2 4424 | . . . 4 ⊢ ({𝑁} ∪ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ∖ {𝑁})) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) | |
| 5 | rabdif 4268 | . . . . 5 ⊢ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ∖ {𝑁}) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} | |
| 6 | 5 | uneq2i 4112 | . . . 4 ⊢ ({𝑁} ∪ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ∖ {𝑁})) = ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
| 7 | 4, 6 | eqtr3i 2756 | . . 3 ⊢ ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) = ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
| 8 | 1, 2 | dfnbgr2 29315 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
| 9 | 8 | eqcomd 2737 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} = (𝐺 NeighbVtx 𝑁)) |
| 10 | 9 | uneq2d 4115 | . . 3 ⊢ (𝑁 ∈ 𝑉 → ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) |
| 11 | 7, 10 | eqtrid 2778 | . 2 ⊢ (𝑁 ∈ 𝑉 → ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) |
| 12 | 3, 11 | eqtrd 2766 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {crab 3395 ∖ cdif 3894 ∪ cun 3895 {csn 4573 ‘cfv 6481 (class class class)co 7346 Vtxcvtx 28974 Edgcedg 29025 NeighbVtx cnbgr 29310 ClNeighbVtx cclnbgr 47928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-nbgr 29311 df-clnbgr 47929 |
| This theorem is referenced by: elclnbgrelnbgr 47935 clnbupgr 47943 clnbgr0edg 47947 edgusgrclnbfin 47952 stgrclnbgr0 48075 isubgr3stgrlem1 48076 |
| Copyright terms: Public domain | W3C validator |