Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfclnbgr4 Structured version   Visualization version   GIF version

Theorem dfclnbgr4 47698
Description: Alternate definition of the closed neighborhood of a vertex as union of the vertex with its open neighborhood. (Contributed by AV, 8-May-2025.)
Hypothesis
Ref Expression
dfclnbgr4.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
dfclnbgr4 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))

Proof of Theorem dfclnbgr4
Dummy variables 𝑒 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfclnbgr4.v . . 3 𝑉 = (Vtx‘𝐺)
2 eqid 2740 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
31, 2dfclnbgr2 47697 . 2 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)}))
4 undif2 4500 . . . 4 ({𝑁} ∪ ({𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)} ∖ {𝑁})) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)})
5 rabdif 4340 . . . . 5 ({𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)} ∖ {𝑁}) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)}
65uneq2i 4188 . . . 4 ({𝑁} ∪ ({𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)} ∖ {𝑁})) = ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)})
74, 6eqtr3i 2770 . . 3 ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)}) = ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)})
81, 2dfnbgr2 29372 . . . . 5 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)})
98eqcomd 2746 . . . 4 (𝑁𝑉 → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)} = (𝐺 NeighbVtx 𝑁))
109uneq2d 4191 . . 3 (𝑁𝑉 → ({𝑁} ∪ {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)}) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))
117, 10eqtrid 2792 . 2 (𝑁𝑉 → ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ (Edg‘𝐺)(𝑁𝑒𝑛𝑒)}) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))
123, 11eqtrd 2780 1 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  cdif 3973  cun 3974  {csn 4648  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  Edgcedg 29082   NeighbVtx cnbgr 29367   ClNeighbVtx cclnbgr 47692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-nbgr 29368  df-clnbgr 47693
This theorem is referenced by:  clnbupgr  47706  clnbgr0edg  47709  edgusgrclnbfin  47714
  Copyright terms: Public domain W3C validator