Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgrcl Structured version   Visualization version   GIF version

Theorem clnbgrcl 47802
Description: If a class 𝑋 has at least one element in its closed neighborhood, this class must be a vertex. (Contributed by AV, 7-May-2025.)
Hypothesis
Ref Expression
clnbgrcl.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clnbgrcl (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑋𝑉)

Proof of Theorem clnbgrcl
Dummy variables 𝑔 𝑒 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-clnbgr 47800 . . 3 ClNeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}))
21mpoxeldm 8215 . 2 (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) → (𝐺 ∈ V ∧ 𝑋𝐺 / 𝑔(Vtx‘𝑔)))
3 csbfv 6931 . . . . 5 𝐺 / 𝑔(Vtx‘𝑔) = (Vtx‘𝐺)
4 clnbgrcl.v . . . . 5 𝑉 = (Vtx‘𝐺)
53, 4eqtr4i 2762 . . . 4 𝐺 / 𝑔(Vtx‘𝑔) = 𝑉
65eleq2i 2827 . . 3 (𝑋𝐺 / 𝑔(Vtx‘𝑔) ↔ 𝑋𝑉)
76biimpi 216 . 2 (𝑋𝐺 / 𝑔(Vtx‘𝑔) → 𝑋𝑉)
82, 7simpl2im 503 1 (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑋𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3061  {crab 3420  Vcvv 3464  csb 3879  cun 3929  wss 3931  {csn 4606  {cpr 4608  cfv 6536  (class class class)co 7410  Vtxcvtx 28980  Edgcedg 29031   ClNeighbVtx cclnbgr 47799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-clnbgr 47800
This theorem is referenced by:  elclnbgrelnbgr  47806  clnbgrel  47809
  Copyright terms: Public domain W3C validator