| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clnbgrcl | Structured version Visualization version GIF version | ||
| Description: If a class 𝑋 has at least one element in its closed neighborhood, this class must be a vertex. (Contributed by AV, 7-May-2025.) |
| Ref | Expression |
|---|---|
| clnbgrcl.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| clnbgrcl | ⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑋 ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clnbgr 47807 | . . 3 ⊢ ClNeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒})) | |
| 2 | 1 | mpoxeldm 8151 | . 2 ⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) → (𝐺 ∈ V ∧ 𝑋 ∈ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔))) |
| 3 | csbfv 6874 | . . . . 5 ⊢ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) = (Vtx‘𝐺) | |
| 4 | clnbgrcl.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 5 | 3, 4 | eqtr4i 2755 | . . . 4 ⊢ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) = 𝑉 |
| 6 | 5 | eleq2i 2820 | . . 3 ⊢ (𝑋 ∈ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) ↔ 𝑋 ∈ 𝑉) |
| 7 | 6 | biimpi 216 | . 2 ⊢ (𝑋 ∈ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) → 𝑋 ∈ 𝑉) |
| 8 | 2, 7 | simpl2im 503 | 1 ⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑋 ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3396 Vcvv 3438 ⦋csb 3853 ∪ cun 3903 ⊆ wss 3905 {csn 4579 {cpr 4581 ‘cfv 6486 (class class class)co 7353 Vtxcvtx 28959 Edgcedg 29010 ClNeighbVtx cclnbgr 47806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-clnbgr 47807 |
| This theorem is referenced by: elclnbgrelnbgr 47813 clnbgrel 47816 clnbupgreli 47823 |
| Copyright terms: Public domain | W3C validator |