Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgrcl Structured version   Visualization version   GIF version

Theorem clnbgrcl 47852
Description: If a class 𝑋 has at least one element in its closed neighborhood, this class must be a vertex. (Contributed by AV, 7-May-2025.)
Hypothesis
Ref Expression
clnbgrcl.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clnbgrcl (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑋𝑉)

Proof of Theorem clnbgrcl
Dummy variables 𝑔 𝑒 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-clnbgr 47850 . . 3 ClNeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}))
21mpoxeldm 8136 . 2 (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) → (𝐺 ∈ V ∧ 𝑋𝐺 / 𝑔(Vtx‘𝑔)))
3 csbfv 6864 . . . . 5 𝐺 / 𝑔(Vtx‘𝑔) = (Vtx‘𝐺)
4 clnbgrcl.v . . . . 5 𝑉 = (Vtx‘𝐺)
53, 4eqtr4i 2757 . . . 4 𝐺 / 𝑔(Vtx‘𝑔) = 𝑉
65eleq2i 2823 . . 3 (𝑋𝐺 / 𝑔(Vtx‘𝑔) ↔ 𝑋𝑉)
76biimpi 216 . 2 (𝑋𝐺 / 𝑔(Vtx‘𝑔) → 𝑋𝑉)
82, 7simpl2im 503 1 (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑋𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  Vcvv 3436  csb 3845  cun 3895  wss 3897  {csn 4571  {cpr 4573  cfv 6476  (class class class)co 7341  Vtxcvtx 28969  Edgcedg 29020   ClNeighbVtx cclnbgr 47849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-clnbgr 47850
This theorem is referenced by:  elclnbgrelnbgr  47856  clnbgrel  47859  clnbupgreli  47866
  Copyright terms: Public domain W3C validator