Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgrnvtx0 Structured version   Visualization version   GIF version

Theorem clnbgrnvtx0 47866
Description: If a class 𝑋 is not a vertex of a graph 𝐺, then it has an empty closed neighborhood in 𝐺. (Contributed by AV, 8-May-2025.)
Hypothesis
Ref Expression
clnbgrel.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clnbgrnvtx0 (𝑋𝑉 → (𝐺 ClNeighbVtx 𝑋) = ∅)

Proof of Theorem clnbgrnvtx0
Dummy variables 𝑒 𝑔 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clnbgrel.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 csbfv 6869 . . . . . 6 𝐺 / 𝑔(Vtx‘𝑔) = (Vtx‘𝐺)
31, 2eqtr4i 2757 . . . . 5 𝑉 = 𝐺 / 𝑔(Vtx‘𝑔)
4 neleq2 3039 . . . . 5 (𝑉 = 𝐺 / 𝑔(Vtx‘𝑔) → (𝑋𝑉𝑋𝐺 / 𝑔(Vtx‘𝑔)))
53, 4ax-mp 5 . . . 4 (𝑋𝑉𝑋𝐺 / 𝑔(Vtx‘𝑔))
65biimpi 216 . . 3 (𝑋𝑉𝑋𝐺 / 𝑔(Vtx‘𝑔))
76olcd 874 . 2 (𝑋𝑉 → (𝐺 ∉ V ∨ 𝑋𝐺 / 𝑔(Vtx‘𝑔)))
8 df-clnbgr 47858 . . 3 ClNeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}))
98mpoxneldm 8142 . 2 ((𝐺 ∉ V ∨ 𝑋𝐺 / 𝑔(Vtx‘𝑔)) → (𝐺 ClNeighbVtx 𝑋) = ∅)
107, 9syl 17 1 (𝑋𝑉 → (𝐺 ClNeighbVtx 𝑋) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1541  wnel 3032  wrex 3056  {crab 3395  Vcvv 3436  csb 3845  cun 3895  wss 3897  c0 4280  {csn 4573  {cpr 4575  cfv 6481  (class class class)co 7346  Vtxcvtx 28974  Edgcedg 29025   ClNeighbVtx cclnbgr 47857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-clnbgr 47858
This theorem is referenced by:  clnbgr0vtx  47875
  Copyright terms: Public domain W3C validator