Step | Hyp | Ref
| Expression |
1 | | cnex 10936 |
. . 3
⊢ ℂ
∈ V |
2 | 1 | elpw2 5272 |
. 2
⊢ (𝐴 ∈ 𝒫 ℂ ↔
𝐴 ⊆
ℂ) |
3 | 1 | elpw2 5272 |
. 2
⊢ (𝐵 ∈ 𝒫 ℂ ↔
𝐵 ⊆
ℂ) |
4 | | oveq2 7276 |
. . . 4
⊢ (𝑎 = 𝐴 → (𝑏 ↑m 𝑎) = (𝑏 ↑m 𝐴)) |
5 | | raleq 3340 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (∀𝑤 ∈ 𝑎 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦) ↔ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦))) |
6 | 5 | rexbidv 3227 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑎 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦))) |
7 | 6 | ralbidv 3122 |
. . . . 5
⊢ (𝑎 = 𝐴 → (∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑎 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦) ↔ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦))) |
8 | 7 | raleqbi1dv 3338 |
. . . 4
⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ 𝑎 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑎 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦))) |
9 | 4, 8 | rabeqbidv 3418 |
. . 3
⊢ (𝑎 = 𝐴 → {𝑓 ∈ (𝑏 ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑎 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)} = {𝑓 ∈ (𝑏 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)}) |
10 | | oveq1 7275 |
. . . 4
⊢ (𝑏 = 𝐵 → (𝑏 ↑m 𝐴) = (𝐵 ↑m 𝐴)) |
11 | 10 | rabeqdv 3417 |
. . 3
⊢ (𝑏 = 𝐵 → {𝑓 ∈ (𝑏 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)} = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)}) |
12 | | df-cncf 24022 |
. . 3
⊢
–cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ
↦ {𝑓 ∈ (𝑏 ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑎 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)}) |
13 | | ovex 7301 |
. . . 4
⊢ (𝐵 ↑m 𝐴) ∈ V |
14 | 13 | rabex 5259 |
. . 3
⊢ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)} ∈ V |
15 | 9, 11, 12, 14 | ovmpo 7424 |
. 2
⊢ ((𝐴 ∈ 𝒫 ℂ ∧
𝐵 ∈ 𝒫 ℂ)
→ (𝐴–cn→𝐵) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)}) |
16 | 2, 3, 15 | syl2anbr 598 |
1
⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)}) |