MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfrss Structured version   Visualization version   GIF version

Theorem cncfrss 23960
Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncfrss (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)

Proof of Theorem cncfrss
Dummy variables 𝑎 𝑏 𝑓 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cncf 23947 . . 3 cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏m 𝑎) ∣ ∀𝑥𝑎𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑎 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
21elmpocl1 7490 . 2 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ∈ 𝒫 ℂ)
32elpwid 4541 1 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wral 3063  wrex 3064  {crab 3067  wss 3883  𝒫 cpw 4530   class class class wbr 5070  cfv 6418  (class class class)co 7255  m cmap 8573  cc 10800   < clt 10940  cmin 11135  +crp 12659  abscabs 14873  cnccncf 23945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-dm 5590  df-iota 6376  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-cncf 23947
This theorem is referenced by:  cncff  23962  cncfi  23963  rescncf  23966  cncffvrn  23967  cncfco  23976  cncfcompt2  23977  cncfmpt2f  23984  cncfcnvcn  23994  cncombf  24727  cnlimci  24958  ulmcn  25463  efmul2picn  32476  mulcncff  43301  subcncff  43311  negcncfg  43312  addcncff  43315  ioccncflimc  43316  icocncflimc  43320  divcncff  43322
  Copyright terms: Public domain W3C validator