| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncfrss | Structured version Visualization version GIF version | ||
| Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| cncfrss | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cncf 24796 | . . 3 ⊢ –cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏 ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑎 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)}) | |
| 2 | 1 | elmpocl1 7588 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ∈ 𝒫 ℂ) |
| 3 | 2 | elpwid 4559 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 {crab 3395 ⊆ wss 3902 𝒫 cpw 4550 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ℂcc 11001 < clt 11143 − cmin 11341 ℝ+crp 12887 abscabs 15138 –cn→ccncf 24794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-dm 5626 df-iota 6437 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-cncf 24796 |
| This theorem is referenced by: cncff 24811 cncfi 24812 rescncf 24815 cncfcdm 24816 cncfco 24825 cncfcompt2 24826 cncfmpt2f 24833 cncfcnvcn 24844 mulcncf 25371 cncombf 25584 cnlimci 25815 ulmcn 26333 efmul2picn 34604 mulcncff 45907 subcncff 45917 negcncfg 45918 addcncff 45921 ioccncflimc 45922 icocncflimc 45926 divcncff 45928 |
| Copyright terms: Public domain | W3C validator |