Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cncfrss | Structured version Visualization version GIF version |
Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cncfrss | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cncf 23947 | . . 3 ⊢ –cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏 ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑎 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)}) | |
2 | 1 | elmpocl1 7490 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ∈ 𝒫 ℂ) |
3 | 2 | elpwid 4541 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 {crab 3067 ⊆ wss 3883 𝒫 cpw 4530 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 ℂcc 10800 < clt 10940 − cmin 11135 ℝ+crp 12659 abscabs 14873 –cn→ccncf 23945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-dm 5590 df-iota 6376 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-cncf 23947 |
This theorem is referenced by: cncff 23962 cncfi 23963 rescncf 23966 cncffvrn 23967 cncfco 23976 cncfcompt2 23977 cncfmpt2f 23984 cncfcnvcn 23994 cncombf 24727 cnlimci 24958 ulmcn 25463 efmul2picn 32476 mulcncff 43301 subcncff 43311 negcncfg 43312 addcncff 43315 ioccncflimc 43316 icocncflimc 43320 divcncff 43322 |
Copyright terms: Public domain | W3C validator |