| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncfrss | Structured version Visualization version GIF version | ||
| Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| cncfrss | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cncf 24807 | . . 3 ⊢ –cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏 ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑎 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)}) | |
| 2 | 1 | elmpocl1 7643 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ∈ 𝒫 ℂ) |
| 3 | 2 | elpwid 4582 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 {crab 3413 ⊆ wss 3924 𝒫 cpw 4573 class class class wbr 5116 ‘cfv 6527 (class class class)co 7399 ↑m cmap 8834 ℂcc 11119 < clt 11261 − cmin 11458 ℝ+crp 13000 abscabs 15240 –cn→ccncf 24805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-xp 5657 df-dm 5661 df-iota 6480 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-cncf 24807 |
| This theorem is referenced by: cncff 24822 cncfi 24823 rescncf 24826 cncfcdm 24827 cncfco 24836 cncfcompt2 24837 cncfmpt2f 24844 cncfcnvcn 24855 mulcncf 25383 cncombf 25596 cnlimci 25827 ulmcn 26345 efmul2picn 34549 mulcncff 45829 subcncff 45839 negcncfg 45840 addcncff 45843 ioccncflimc 45844 icocncflimc 45848 divcncff 45850 |
| Copyright terms: Public domain | W3C validator |