| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncfrss | Structured version Visualization version GIF version | ||
| Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| cncfrss | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cncf 24778 | . . 3 ⊢ –cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏 ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑎 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)}) | |
| 2 | 1 | elmpocl1 7634 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ∈ 𝒫 ℂ) |
| 3 | 2 | elpwid 4575 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 {crab 3408 ⊆ wss 3917 𝒫 cpw 4566 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 ℂcc 11073 < clt 11215 − cmin 11412 ℝ+crp 12958 abscabs 15207 –cn→ccncf 24776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-dm 5651 df-iota 6467 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-cncf 24778 |
| This theorem is referenced by: cncff 24793 cncfi 24794 rescncf 24797 cncfcdm 24798 cncfco 24807 cncfcompt2 24808 cncfmpt2f 24815 cncfcnvcn 24826 mulcncf 25353 cncombf 25566 cnlimci 25797 ulmcn 26315 efmul2picn 34594 mulcncff 45875 subcncff 45885 negcncfg 45886 addcncff 45889 ioccncflimc 45890 icocncflimc 45894 divcncff 45896 |
| Copyright terms: Public domain | W3C validator |