MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfrss Structured version   Visualization version   GIF version

Theorem cncfrss 24835
Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncfrss (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)

Proof of Theorem cncfrss
Dummy variables 𝑎 𝑏 𝑓 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cncf 24822 . . 3 cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏m 𝑎) ∣ ∀𝑥𝑎𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑎 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
21elmpocl1 7649 . 2 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ∈ 𝒫 ℂ)
32elpwid 4584 1 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wral 3051  wrex 3060  {crab 3415  wss 3926  𝒫 cpw 4575   class class class wbr 5119  cfv 6531  (class class class)co 7405  m cmap 8840  cc 11127   < clt 11269  cmin 11466  +crp 13008  abscabs 15253  cnccncf 24820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-dm 5664  df-iota 6484  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-cncf 24822
This theorem is referenced by:  cncff  24837  cncfi  24838  rescncf  24841  cncfcdm  24842  cncfco  24851  cncfcompt2  24852  cncfmpt2f  24859  cncfcnvcn  24870  mulcncf  25398  cncombf  25611  cnlimci  25842  ulmcn  26360  efmul2picn  34628  mulcncff  45899  subcncff  45909  negcncfg  45910  addcncff  45913  ioccncflimc  45914  icocncflimc  45918  divcncff  45920
  Copyright terms: Public domain W3C validator