| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncfrss | Structured version Visualization version GIF version | ||
| Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| cncfrss | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cncf 24771 | . . 3 ⊢ –cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏 ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑎 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)}) | |
| 2 | 1 | elmpocl1 7631 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ∈ 𝒫 ℂ) |
| 3 | 2 | elpwid 4572 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3405 ⊆ wss 3914 𝒫 cpw 4563 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 ℂcc 11066 < clt 11208 − cmin 11405 ℝ+crp 12951 abscabs 15200 –cn→ccncf 24769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-dm 5648 df-iota 6464 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-cncf 24771 |
| This theorem is referenced by: cncff 24786 cncfi 24787 rescncf 24790 cncfcdm 24791 cncfco 24800 cncfcompt2 24801 cncfmpt2f 24808 cncfcnvcn 24819 mulcncf 25346 cncombf 25559 cnlimci 25790 ulmcn 26308 efmul2picn 34587 mulcncff 45868 subcncff 45878 negcncfg 45879 addcncff 45882 ioccncflimc 45883 icocncflimc 45887 divcncff 45889 |
| Copyright terms: Public domain | W3C validator |