MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfrss2 Structured version   Visualization version   GIF version

Theorem cncfrss2 24856
Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncfrss2 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)

Proof of Theorem cncfrss2
Dummy variables 𝑎 𝑏 𝑓 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cncf 24842 . . 3 cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏m 𝑎) ∣ ∀𝑥𝑎𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑎 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
21elmpocl2 7664 . 2 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ∈ 𝒫 ℂ)
32elpwid 4613 1 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  wral 3050  wrex 3059  {crab 3418  wss 3944  𝒫 cpw 4604   class class class wbr 5149  cfv 6549  (class class class)co 7419  m cmap 8845  cc 11138   < clt 11280  cmin 11476  +crp 13009  abscabs 15217  cnccncf 24840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-xp 5684  df-dm 5688  df-iota 6501  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-cncf 24842
This theorem is referenced by:  cncff  24857  cncfi  24858  rescncf  24861  climcncf  24864  cncfco  24871  cncfcnvcn  24890  cnlimci  25862  cncfmptssg  45397  cncfcompt  45409
  Copyright terms: Public domain W3C validator