MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfrss2 Structured version   Visualization version   GIF version

Theorem cncfrss2 24278
Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncfrss2 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)

Proof of Theorem cncfrss2
Dummy variables 𝑎 𝑏 𝑓 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cncf 24264 . . 3 cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏m 𝑎) ∣ ∀𝑥𝑎𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑎 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
21elmpocl2 7601 . 2 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ∈ 𝒫 ℂ)
32elpwid 4573 1 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wral 3061  wrex 3070  {crab 3406  wss 3914  𝒫 cpw 4564   class class class wbr 5109  cfv 6500  (class class class)co 7361  m cmap 8771  cc 11057   < clt 11197  cmin 11393  +crp 12923  abscabs 15128  cnccncf 24262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-xp 5643  df-dm 5647  df-iota 6452  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-cncf 24264
This theorem is referenced by:  cncff  24279  cncfi  24280  rescncf  24283  climcncf  24286  cncfco  24293  cncfcnvcn  24311  cnlimci  25276  cncfmptssg  44202  cncfcompt  44214
  Copyright terms: Public domain W3C validator