Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cncfrss2 | Structured version Visualization version GIF version |
Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cncfrss2 | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cncf 23947 | . . 3 ⊢ –cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏 ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑎 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)}) | |
2 | 1 | elmpocl2 7491 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ∈ 𝒫 ℂ) |
3 | 2 | elpwid 4541 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 {crab 3067 ⊆ wss 3883 𝒫 cpw 4530 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 ℂcc 10800 < clt 10940 − cmin 11135 ℝ+crp 12659 abscabs 14873 –cn→ccncf 23945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-dm 5590 df-iota 6376 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-cncf 23947 |
This theorem is referenced by: cncff 23962 cncfi 23963 rescncf 23966 climcncf 23969 cncfco 23976 cncfcnvcn 23994 cnlimci 24958 cncfmptssg 43302 cncfcompt 43314 |
Copyright terms: Public domain | W3C validator |