MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfrss2 Structured version   Visualization version   GIF version

Theorem cncfrss2 24943
Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncfrss2 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)

Proof of Theorem cncfrss2
Dummy variables 𝑎 𝑏 𝑓 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cncf 24929 . . 3 cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏m 𝑎) ∣ ∀𝑥𝑎𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑎 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
21elmpocl2 7683 . 2 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ∈ 𝒫 ℂ)
32elpwid 4617 1 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wral 3061  wrex 3070  {crab 3436  wss 3966  𝒫 cpw 4608   class class class wbr 5151  cfv 6569  (class class class)co 7438  m cmap 8874  cc 11160   < clt 11302  cmin 11499  +crp 13041  abscabs 15279  cnccncf 24927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-xp 5699  df-dm 5703  df-iota 6522  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-cncf 24929
This theorem is referenced by:  cncff  24944  cncfi  24945  rescncf  24948  climcncf  24951  cncfco  24958  cncfcnvcn  24977  cnlimci  25950  cncfmptssg  45855  cncfcompt  45867
  Copyright terms: Public domain W3C validator