![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncfrss2 | Structured version Visualization version GIF version |
Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cncfrss2 | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cncf 22901 | . . 3 ⊢ –cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏 ↑𝑚 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑎 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)}) | |
2 | 1 | elmpt2cl2 7029 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ∈ 𝒫 ℂ) |
3 | 2 | elpwid 4310 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 ∀wral 3061 ∃wrex 3062 {crab 3065 ⊆ wss 3723 𝒫 cpw 4298 class class class wbr 4787 ‘cfv 6030 (class class class)co 6796 ↑𝑚 cmap 8013 ℂcc 10140 < clt 10280 − cmin 10472 ℝ+crp 12035 abscabs 14182 –cn→ccncf 22899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-xp 5256 df-dm 5260 df-iota 5993 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-cncf 22901 |
This theorem is referenced by: cncff 22916 cncfi 22917 rescncf 22920 climcncf 22923 cncfco 22930 cncfcnvcn 22944 cnlimci 23873 cncfmptssg 40598 cncfcompt 40611 |
Copyright terms: Public domain | W3C validator |