![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncfrss2 | Structured version Visualization version GIF version |
Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cncfrss2 | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cncf 23052 | . . 3 ⊢ –cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏 ↑𝑚 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑎 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)}) | |
2 | 1 | elmpt2cl2 7139 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ∈ 𝒫 ℂ) |
3 | 2 | elpwid 4391 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2166 ∀wral 3118 ∃wrex 3119 {crab 3122 ⊆ wss 3799 𝒫 cpw 4379 class class class wbr 4874 ‘cfv 6124 (class class class)co 6906 ↑𝑚 cmap 8123 ℂcc 10251 < clt 10392 − cmin 10586 ℝ+crp 12113 abscabs 14352 –cn→ccncf 23050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-br 4875 df-opab 4937 df-xp 5349 df-dm 5353 df-iota 6087 df-fv 6132 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-cncf 23052 |
This theorem is referenced by: cncff 23067 cncfi 23068 rescncf 23071 climcncf 23074 cncfco 23081 cncfcnvcn 23095 cnlimci 24053 cncfmptssg 40879 cncfcompt 40892 |
Copyright terms: Public domain | W3C validator |