Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coeleqvrels Structured version   Visualization version   GIF version

Definition df-coeleqvrels 36322
Description: Define the the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 36332. Alternate definition is dfcoeleqvrels 36357. (Contributed by Peter Mazsa, 28-Nov-2022.)
Assertion
Ref Expression
df-coeleqvrels CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }

Detailed syntax breakdown of Definition df-coeleqvrels
StepHypRef Expression
1 ccoeleqvrels 35974 . 2 class CoElEqvRels
2 cep 5433 . . . . . . 7 class E
32ccnv 5524 . . . . . 6 class E
4 va . . . . . . 7 setvar 𝑎
54cv 1541 . . . . . 6 class 𝑎
63, 5cres 5527 . . . . 5 class ( E ↾ 𝑎)
76ccoss 35956 . . . 4 class ≀ ( E ↾ 𝑎)
8 ceqvrels 35972 . . . 4 class EqvRels
97, 8wcel 2114 . . 3 wff ≀ ( E ↾ 𝑎) ∈ EqvRels
109, 4cab 2716 . 2 class {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
111, 10wceq 1542 1 wff CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
Colors of variables: wff setvar class
This definition is referenced by:  elcoeleqvrels  36331  dfcoeleqvrels  36357
  Copyright terms: Public domain W3C validator