![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrels | Structured version Visualization version GIF version |
Description: Define the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 37956. Alternate definition is dfcoeleqvrels 37981. (Contributed by Peter Mazsa, 28-Nov-2022.) |
Ref | Expression |
---|---|
df-coeleqvrels | ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccoeleqvrels 37551 | . 2 class CoElEqvRels | |
2 | cep 5569 | . . . . . . 7 class E | |
3 | 2 | ccnv 5665 | . . . . . 6 class ◡ E |
4 | va | . . . . . . 7 setvar 𝑎 | |
5 | 4 | cv 1532 | . . . . . 6 class 𝑎 |
6 | 3, 5 | cres 5668 | . . . . 5 class (◡ E ↾ 𝑎) |
7 | 6 | ccoss 37533 | . . . 4 class ≀ (◡ E ↾ 𝑎) |
8 | ceqvrels 37549 | . . . 4 class EqvRels | |
9 | 7, 8 | wcel 2098 | . . 3 wff ≀ (◡ E ↾ 𝑎) ∈ EqvRels |
10 | 9, 4 | cab 2701 | . 2 class {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
11 | 1, 10 | wceq 1533 | 1 wff CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
Colors of variables: wff setvar class |
This definition is referenced by: elcoeleqvrels 37955 dfcoeleqvrels 37981 |
Copyright terms: Public domain | W3C validator |