| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrels | Structured version Visualization version GIF version | ||
| Description: Define the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38580. Alternate definition is dfcoeleqvrels 38605. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| Ref | Expression |
|---|---|
| df-coeleqvrels | ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccoeleqvrels 38180 | . 2 class CoElEqvRels | |
| 2 | cep 5530 | . . . . . . 7 class E | |
| 3 | 2 | ccnv 5630 | . . . . . 6 class ◡ E |
| 4 | va | . . . . . . 7 setvar 𝑎 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑎 |
| 6 | 3, 5 | cres 5633 | . . . . 5 class (◡ E ↾ 𝑎) |
| 7 | 6 | ccoss 38162 | . . . 4 class ≀ (◡ E ↾ 𝑎) |
| 8 | ceqvrels 38178 | . . . 4 class EqvRels | |
| 9 | 7, 8 | wcel 2109 | . . 3 wff ≀ (◡ E ↾ 𝑎) ∈ EqvRels |
| 10 | 9, 4 | cab 2707 | . 2 class {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
| 11 | 1, 10 | wceq 1540 | 1 wff CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
| Colors of variables: wff setvar class |
| This definition is referenced by: elcoeleqvrels 38579 dfcoeleqvrels 38605 |
| Copyright terms: Public domain | W3C validator |