![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrels | Structured version Visualization version GIF version |
Description: Define the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38578. Alternate definition is dfcoeleqvrels 38603. (Contributed by Peter Mazsa, 28-Nov-2022.) |
Ref | Expression |
---|---|
df-coeleqvrels | ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccoeleqvrels 38180 | . 2 class CoElEqvRels | |
2 | cep 5588 | . . . . . . 7 class E | |
3 | 2 | ccnv 5688 | . . . . . 6 class ◡ E |
4 | va | . . . . . . 7 setvar 𝑎 | |
5 | 4 | cv 1536 | . . . . . 6 class 𝑎 |
6 | 3, 5 | cres 5691 | . . . . 5 class (◡ E ↾ 𝑎) |
7 | 6 | ccoss 38162 | . . . 4 class ≀ (◡ E ↾ 𝑎) |
8 | ceqvrels 38178 | . . . 4 class EqvRels | |
9 | 7, 8 | wcel 2106 | . . 3 wff ≀ (◡ E ↾ 𝑎) ∈ EqvRels |
10 | 9, 4 | cab 2712 | . 2 class {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
11 | 1, 10 | wceq 1537 | 1 wff CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
Colors of variables: wff setvar class |
This definition is referenced by: elcoeleqvrels 38577 dfcoeleqvrels 38603 |
Copyright terms: Public domain | W3C validator |