Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrels | Structured version Visualization version GIF version |
Description: Define the the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 36810. Alternate definition is dfcoeleqvrels 36835. (Contributed by Peter Mazsa, 28-Nov-2022.) |
Ref | Expression |
---|---|
df-coeleqvrels | ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccoeleqvrels 36399 | . 2 class CoElEqvRels | |
2 | cep 5505 | . . . . . . 7 class E | |
3 | 2 | ccnv 5599 | . . . . . 6 class ◡ E |
4 | va | . . . . . . 7 setvar 𝑎 | |
5 | 4 | cv 1538 | . . . . . 6 class 𝑎 |
6 | 3, 5 | cres 5602 | . . . . 5 class (◡ E ↾ 𝑎) |
7 | 6 | ccoss 36381 | . . . 4 class ≀ (◡ E ↾ 𝑎) |
8 | ceqvrels 36397 | . . . 4 class EqvRels | |
9 | 7, 8 | wcel 2104 | . . 3 wff ≀ (◡ E ↾ 𝑎) ∈ EqvRels |
10 | 9, 4 | cab 2713 | . 2 class {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
11 | 1, 10 | wceq 1539 | 1 wff CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
Colors of variables: wff setvar class |
This definition is referenced by: elcoeleqvrels 36809 dfcoeleqvrels 36835 |
Copyright terms: Public domain | W3C validator |