| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrels | Structured version Visualization version GIF version | ||
| Description: Define the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38698. Alternate definition is dfcoeleqvrels 38723. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| Ref | Expression |
|---|---|
| df-coeleqvrels | ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccoeleqvrels 38246 | . 2 class CoElEqvRels | |
| 2 | cep 5518 | . . . . . . 7 class E | |
| 3 | 2 | ccnv 5618 | . . . . . 6 class ◡ E |
| 4 | va | . . . . . . 7 setvar 𝑎 | |
| 5 | 4 | cv 1540 | . . . . . 6 class 𝑎 |
| 6 | 3, 5 | cres 5621 | . . . . 5 class (◡ E ↾ 𝑎) |
| 7 | 6 | ccoss 38228 | . . . 4 class ≀ (◡ E ↾ 𝑎) |
| 8 | ceqvrels 38244 | . . . 4 class EqvRels | |
| 9 | 7, 8 | wcel 2111 | . . 3 wff ≀ (◡ E ↾ 𝑎) ∈ EqvRels |
| 10 | 9, 4 | cab 2709 | . 2 class {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
| 11 | 1, 10 | wceq 1541 | 1 wff CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
| Colors of variables: wff setvar class |
| This definition is referenced by: elcoeleqvrels 38697 dfcoeleqvrels 38723 |
| Copyright terms: Public domain | W3C validator |