Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coeleqvrels Structured version   Visualization version   GIF version

Definition df-coeleqvrels 38609
Description: Define the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38619. Alternate definition is dfcoeleqvrels 38644. (Contributed by Peter Mazsa, 28-Nov-2022.)
Assertion
Ref Expression
df-coeleqvrels CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }

Detailed syntax breakdown of Definition df-coeleqvrels
StepHypRef Expression
1 ccoeleqvrels 38222 . 2 class CoElEqvRels
2 cep 5557 . . . . . . 7 class E
32ccnv 5658 . . . . . 6 class E
4 va . . . . . . 7 setvar 𝑎
54cv 1539 . . . . . 6 class 𝑎
63, 5cres 5661 . . . . 5 class ( E ↾ 𝑎)
76ccoss 38204 . . . 4 class ≀ ( E ↾ 𝑎)
8 ceqvrels 38220 . . . 4 class EqvRels
97, 8wcel 2109 . . 3 wff ≀ ( E ↾ 𝑎) ∈ EqvRels
109, 4cab 2714 . 2 class {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
111, 10wceq 1540 1 wff CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
Colors of variables: wff setvar class
This definition is referenced by:  elcoeleqvrels  38618  dfcoeleqvrels  38644
  Copyright terms: Public domain W3C validator