Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coeleqvrels Structured version   Visualization version   GIF version

Definition df-coeleqvrels 38577
Description: Define the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38587. Alternate definition is dfcoeleqvrels 38612. (Contributed by Peter Mazsa, 28-Nov-2022.)
Assertion
Ref Expression
df-coeleqvrels CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }

Detailed syntax breakdown of Definition df-coeleqvrels
StepHypRef Expression
1 ccoeleqvrels 38187 . 2 class CoElEqvRels
2 cep 5537 . . . . . . 7 class E
32ccnv 5637 . . . . . 6 class E
4 va . . . . . . 7 setvar 𝑎
54cv 1539 . . . . . 6 class 𝑎
63, 5cres 5640 . . . . 5 class ( E ↾ 𝑎)
76ccoss 38169 . . . 4 class ≀ ( E ↾ 𝑎)
8 ceqvrels 38185 . . . 4 class EqvRels
97, 8wcel 2109 . . 3 wff ≀ ( E ↾ 𝑎) ∈ EqvRels
109, 4cab 2707 . 2 class {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
111, 10wceq 1540 1 wff CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
Colors of variables: wff setvar class
This definition is referenced by:  elcoeleqvrels  38586  dfcoeleqvrels  38612
  Copyright terms: Public domain W3C validator