Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coeleqvrels Structured version   Visualization version   GIF version

Definition df-coeleqvrels 38688
Description: Define the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38698. Alternate definition is dfcoeleqvrels 38723. (Contributed by Peter Mazsa, 28-Nov-2022.)
Assertion
Ref Expression
df-coeleqvrels CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }

Detailed syntax breakdown of Definition df-coeleqvrels
StepHypRef Expression
1 ccoeleqvrels 38246 . 2 class CoElEqvRels
2 cep 5518 . . . . . . 7 class E
32ccnv 5618 . . . . . 6 class E
4 va . . . . . . 7 setvar 𝑎
54cv 1540 . . . . . 6 class 𝑎
63, 5cres 5621 . . . . 5 class ( E ↾ 𝑎)
76ccoss 38228 . . . 4 class ≀ ( E ↾ 𝑎)
8 ceqvrels 38244 . . . 4 class EqvRels
97, 8wcel 2111 . . 3 wff ≀ ( E ↾ 𝑎) ∈ EqvRels
109, 4cab 2709 . 2 class {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
111, 10wceq 1541 1 wff CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
Colors of variables: wff setvar class
This definition is referenced by:  elcoeleqvrels  38697  dfcoeleqvrels  38723
  Copyright terms: Public domain W3C validator