| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrels | Structured version Visualization version GIF version | ||
| Description: Define the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38587. Alternate definition is dfcoeleqvrels 38612. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| Ref | Expression |
|---|---|
| df-coeleqvrels | ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccoeleqvrels 38187 | . 2 class CoElEqvRels | |
| 2 | cep 5537 | . . . . . . 7 class E | |
| 3 | 2 | ccnv 5637 | . . . . . 6 class ◡ E |
| 4 | va | . . . . . . 7 setvar 𝑎 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑎 |
| 6 | 3, 5 | cres 5640 | . . . . 5 class (◡ E ↾ 𝑎) |
| 7 | 6 | ccoss 38169 | . . . 4 class ≀ (◡ E ↾ 𝑎) |
| 8 | ceqvrels 38185 | . . . 4 class EqvRels | |
| 9 | 7, 8 | wcel 2109 | . . 3 wff ≀ (◡ E ↾ 𝑎) ∈ EqvRels |
| 10 | 9, 4 | cab 2707 | . 2 class {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
| 11 | 1, 10 | wceq 1540 | 1 wff CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
| Colors of variables: wff setvar class |
| This definition is referenced by: elcoeleqvrels 38586 dfcoeleqvrels 38612 |
| Copyright terms: Public domain | W3C validator |