Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrels | Structured version Visualization version GIF version |
Description: Define the the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 36332. Alternate definition is dfcoeleqvrels 36357. (Contributed by Peter Mazsa, 28-Nov-2022.) |
Ref | Expression |
---|---|
df-coeleqvrels | ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccoeleqvrels 35974 | . 2 class CoElEqvRels | |
2 | cep 5433 | . . . . . . 7 class E | |
3 | 2 | ccnv 5524 | . . . . . 6 class ◡ E |
4 | va | . . . . . . 7 setvar 𝑎 | |
5 | 4 | cv 1541 | . . . . . 6 class 𝑎 |
6 | 3, 5 | cres 5527 | . . . . 5 class (◡ E ↾ 𝑎) |
7 | 6 | ccoss 35956 | . . . 4 class ≀ (◡ E ↾ 𝑎) |
8 | ceqvrels 35972 | . . . 4 class EqvRels | |
9 | 7, 8 | wcel 2114 | . . 3 wff ≀ (◡ E ↾ 𝑎) ∈ EqvRels |
10 | 9, 4 | cab 2716 | . 2 class {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
11 | 1, 10 | wceq 1542 | 1 wff CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
Colors of variables: wff setvar class |
This definition is referenced by: elcoeleqvrels 36331 dfcoeleqvrels 36357 |
Copyright terms: Public domain | W3C validator |