Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrels | Structured version Visualization version GIF version |
Description: Define the the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 36688. Alternate definition is dfcoeleqvrels 36713. (Contributed by Peter Mazsa, 28-Nov-2022.) |
Ref | Expression |
---|---|
df-coeleqvrels | ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccoeleqvrels 36330 | . 2 class CoElEqvRels | |
2 | cep 5493 | . . . . . . 7 class E | |
3 | 2 | ccnv 5587 | . . . . . 6 class ◡ E |
4 | va | . . . . . . 7 setvar 𝑎 | |
5 | 4 | cv 1540 | . . . . . 6 class 𝑎 |
6 | 3, 5 | cres 5590 | . . . . 5 class (◡ E ↾ 𝑎) |
7 | 6 | ccoss 36312 | . . . 4 class ≀ (◡ E ↾ 𝑎) |
8 | ceqvrels 36328 | . . . 4 class EqvRels | |
9 | 7, 8 | wcel 2109 | . . 3 wff ≀ (◡ E ↾ 𝑎) ∈ EqvRels |
10 | 9, 4 | cab 2716 | . 2 class {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
11 | 1, 10 | wceq 1541 | 1 wff CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
Colors of variables: wff setvar class |
This definition is referenced by: elcoeleqvrels 36687 dfcoeleqvrels 36713 |
Copyright terms: Public domain | W3C validator |