| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrels | Structured version Visualization version GIF version | ||
| Description: Define the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38593. Alternate definition is dfcoeleqvrels 38618. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| Ref | Expression |
|---|---|
| df-coeleqvrels | ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccoeleqvrels 38193 | . 2 class CoElEqvRels | |
| 2 | cep 5518 | . . . . . . 7 class E | |
| 3 | 2 | ccnv 5618 | . . . . . 6 class ◡ E |
| 4 | va | . . . . . . 7 setvar 𝑎 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑎 |
| 6 | 3, 5 | cres 5621 | . . . . 5 class (◡ E ↾ 𝑎) |
| 7 | 6 | ccoss 38175 | . . . 4 class ≀ (◡ E ↾ 𝑎) |
| 8 | ceqvrels 38191 | . . . 4 class EqvRels | |
| 9 | 7, 8 | wcel 2109 | . . 3 wff ≀ (◡ E ↾ 𝑎) ∈ EqvRels |
| 10 | 9, 4 | cab 2707 | . 2 class {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
| 11 | 1, 10 | wceq 1540 | 1 wff CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
| Colors of variables: wff setvar class |
| This definition is referenced by: elcoeleqvrels 38592 dfcoeleqvrels 38618 |
| Copyright terms: Public domain | W3C validator |