Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coeleqvrels Structured version   Visualization version   GIF version

Definition df-coeleqvrels 36678
Description: Define the the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 36688. Alternate definition is dfcoeleqvrels 36713. (Contributed by Peter Mazsa, 28-Nov-2022.)
Assertion
Ref Expression
df-coeleqvrels CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }

Detailed syntax breakdown of Definition df-coeleqvrels
StepHypRef Expression
1 ccoeleqvrels 36330 . 2 class CoElEqvRels
2 cep 5493 . . . . . . 7 class E
32ccnv 5587 . . . . . 6 class E
4 va . . . . . . 7 setvar 𝑎
54cv 1540 . . . . . 6 class 𝑎
63, 5cres 5590 . . . . 5 class ( E ↾ 𝑎)
76ccoss 36312 . . . 4 class ≀ ( E ↾ 𝑎)
8 ceqvrels 36328 . . . 4 class EqvRels
97, 8wcel 2109 . . 3 wff ≀ ( E ↾ 𝑎) ∈ EqvRels
109, 4cab 2716 . 2 class {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
111, 10wceq 1541 1 wff CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
Colors of variables: wff setvar class
This definition is referenced by:  elcoeleqvrels  36687  dfcoeleqvrels  36713
  Copyright terms: Public domain W3C validator