Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coeleqvrels Structured version   Visualization version   GIF version

Definition df-coeleqvrels 36800
Description: Define the the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 36810. Alternate definition is dfcoeleqvrels 36835. (Contributed by Peter Mazsa, 28-Nov-2022.)
Assertion
Ref Expression
df-coeleqvrels CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }

Detailed syntax breakdown of Definition df-coeleqvrels
StepHypRef Expression
1 ccoeleqvrels 36399 . 2 class CoElEqvRels
2 cep 5505 . . . . . . 7 class E
32ccnv 5599 . . . . . 6 class E
4 va . . . . . . 7 setvar 𝑎
54cv 1538 . . . . . 6 class 𝑎
63, 5cres 5602 . . . . 5 class ( E ↾ 𝑎)
76ccoss 36381 . . . 4 class ≀ ( E ↾ 𝑎)
8 ceqvrels 36397 . . . 4 class EqvRels
97, 8wcel 2104 . . 3 wff ≀ ( E ↾ 𝑎) ∈ EqvRels
109, 4cab 2713 . 2 class {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
111, 10wceq 1539 1 wff CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
Colors of variables: wff setvar class
This definition is referenced by:  elcoeleqvrels  36809  dfcoeleqvrels  36835
  Copyright terms: Public domain W3C validator