Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coeleqvrels Structured version   Visualization version   GIF version

Definition df-coeleqvrels 37946
Description: Define the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 37956. Alternate definition is dfcoeleqvrels 37981. (Contributed by Peter Mazsa, 28-Nov-2022.)
Assertion
Ref Expression
df-coeleqvrels CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }

Detailed syntax breakdown of Definition df-coeleqvrels
StepHypRef Expression
1 ccoeleqvrels 37551 . 2 class CoElEqvRels
2 cep 5569 . . . . . . 7 class E
32ccnv 5665 . . . . . 6 class E
4 va . . . . . . 7 setvar 𝑎
54cv 1532 . . . . . 6 class 𝑎
63, 5cres 5668 . . . . 5 class ( E ↾ 𝑎)
76ccoss 37533 . . . 4 class ≀ ( E ↾ 𝑎)
8 ceqvrels 37549 . . . 4 class EqvRels
97, 8wcel 2098 . . 3 wff ≀ ( E ↾ 𝑎) ∈ EqvRels
109, 4cab 2701 . 2 class {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
111, 10wceq 1533 1 wff CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
Colors of variables: wff setvar class
This definition is referenced by:  elcoeleqvrels  37955  dfcoeleqvrels  37981
  Copyright terms: Public domain W3C validator