![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrels | Structured version Visualization version GIF version |
Description: Define the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38552. Alternate definition is dfcoeleqvrels 38577. (Contributed by Peter Mazsa, 28-Nov-2022.) |
Ref | Expression |
---|---|
df-coeleqvrels | ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccoeleqvrels 38153 | . 2 class CoElEqvRels | |
2 | cep 5598 | . . . . . . 7 class E | |
3 | 2 | ccnv 5699 | . . . . . 6 class ◡ E |
4 | va | . . . . . . 7 setvar 𝑎 | |
5 | 4 | cv 1536 | . . . . . 6 class 𝑎 |
6 | 3, 5 | cres 5702 | . . . . 5 class (◡ E ↾ 𝑎) |
7 | 6 | ccoss 38135 | . . . 4 class ≀ (◡ E ↾ 𝑎) |
8 | ceqvrels 38151 | . . . 4 class EqvRels | |
9 | 7, 8 | wcel 2108 | . . 3 wff ≀ (◡ E ↾ 𝑎) ∈ EqvRels |
10 | 9, 4 | cab 2717 | . 2 class {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
11 | 1, 10 | wceq 1537 | 1 wff CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
Colors of variables: wff setvar class |
This definition is referenced by: elcoeleqvrels 38551 dfcoeleqvrels 38577 |
Copyright terms: Public domain | W3C validator |