| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrels | Structured version Visualization version GIF version | ||
| Description: Define the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38619. Alternate definition is dfcoeleqvrels 38644. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| Ref | Expression |
|---|---|
| df-coeleqvrels | ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccoeleqvrels 38222 | . 2 class CoElEqvRels | |
| 2 | cep 5557 | . . . . . . 7 class E | |
| 3 | 2 | ccnv 5658 | . . . . . 6 class ◡ E |
| 4 | va | . . . . . . 7 setvar 𝑎 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑎 |
| 6 | 3, 5 | cres 5661 | . . . . 5 class (◡ E ↾ 𝑎) |
| 7 | 6 | ccoss 38204 | . . . 4 class ≀ (◡ E ↾ 𝑎) |
| 8 | ceqvrels 38220 | . . . 4 class EqvRels | |
| 9 | 7, 8 | wcel 2109 | . . 3 wff ≀ (◡ E ↾ 𝑎) ∈ EqvRels |
| 10 | 9, 4 | cab 2714 | . 2 class {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
| 11 | 1, 10 | wceq 1540 | 1 wff CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
| Colors of variables: wff setvar class |
| This definition is referenced by: elcoeleqvrels 38618 dfcoeleqvrels 38644 |
| Copyright terms: Public domain | W3C validator |