![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elcoeleqvrels | Structured version Visualization version GIF version |
Description: Elementhood in the coelement equivalence relations class. (Contributed by Peter Mazsa, 24-Jul-2023.) |
Ref | Expression |
---|---|
elcoeleqvrels | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ CoElEqvRels ↔ ≀ (◡ E ↾ 𝐴) ∈ EqvRels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseq2 5977 | . . . 4 ⊢ (𝑎 = 𝐴 → (◡ E ↾ 𝑎) = (◡ E ↾ 𝐴)) | |
2 | 1 | cosseqd 37298 | . . 3 ⊢ (𝑎 = 𝐴 → ≀ (◡ E ↾ 𝑎) = ≀ (◡ E ↾ 𝐴)) |
3 | 2 | eleq1d 2819 | . 2 ⊢ (𝑎 = 𝐴 → ( ≀ (◡ E ↾ 𝑎) ∈ EqvRels ↔ ≀ (◡ E ↾ 𝐴) ∈ EqvRels )) |
4 | df-coeleqvrels 37456 | . 2 ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } | |
5 | 3, 4 | elab2g 3671 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ CoElEqvRels ↔ ≀ (◡ E ↾ 𝐴) ∈ EqvRels )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 E cep 5580 ◡ccnv 5676 ↾ cres 5679 ≀ ccoss 37043 EqvRels ceqvrels 37059 CoElEqvRels ccoeleqvrels 37061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-in 3956 df-br 5150 df-opab 5212 df-xp 5683 df-res 5689 df-coss 37281 df-coeleqvrels 37456 |
This theorem is referenced by: elcoeleqvrelsrel 37466 |
Copyright terms: Public domain | W3C validator |