Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcoeleqvrels Structured version   Visualization version   GIF version

Theorem elcoeleqvrels 36635
Description: Elementhood in the coelement equivalence relations class. (Contributed by Peter Mazsa, 24-Jul-2023.)
Assertion
Ref Expression
elcoeleqvrels (𝐴𝑉 → (𝐴 ∈ CoElEqvRels ↔ ≀ ( E ↾ 𝐴) ∈ EqvRels ))

Proof of Theorem elcoeleqvrels
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 reseq2 5875 . . . 4 (𝑎 = 𝐴 → ( E ↾ 𝑎) = ( E ↾ 𝐴))
21cosseqd 36478 . . 3 (𝑎 = 𝐴 → ≀ ( E ↾ 𝑎) = ≀ ( E ↾ 𝐴))
32eleq1d 2823 . 2 (𝑎 = 𝐴 → ( ≀ ( E ↾ 𝑎) ∈ EqvRels ↔ ≀ ( E ↾ 𝐴) ∈ EqvRels ))
4 df-coeleqvrels 36626 . 2 CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
53, 4elab2g 3604 1 (𝐴𝑉 → (𝐴 ∈ CoElEqvRels ↔ ≀ ( E ↾ 𝐴) ∈ EqvRels ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108   E cep 5485  ccnv 5579  cres 5582  ccoss 36260   EqvRels ceqvrels 36276   CoElEqvRels ccoeleqvrels 36278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-in 3890  df-br 5071  df-opab 5133  df-xp 5586  df-res 5592  df-coss 36464  df-coeleqvrels 36626
This theorem is referenced by:  elcoeleqvrelsrel  36636
  Copyright terms: Public domain W3C validator