Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcoeleqvrels Structured version   Visualization version   GIF version

Theorem elcoeleqvrels 38119
Description: Elementhood in the coelement equivalence relations class. (Contributed by Peter Mazsa, 24-Jul-2023.)
Assertion
Ref Expression
elcoeleqvrels (𝐴𝑉 → (𝐴 ∈ CoElEqvRels ↔ ≀ ( E ↾ 𝐴) ∈ EqvRels ))

Proof of Theorem elcoeleqvrels
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 reseq2 5975 . . . 4 (𝑎 = 𝐴 → ( E ↾ 𝑎) = ( E ↾ 𝐴))
21cosseqd 37952 . . 3 (𝑎 = 𝐴 → ≀ ( E ↾ 𝑎) = ≀ ( E ↾ 𝐴))
32eleq1d 2810 . 2 (𝑎 = 𝐴 → ( ≀ ( E ↾ 𝑎) ∈ EqvRels ↔ ≀ ( E ↾ 𝐴) ∈ EqvRels ))
4 df-coeleqvrels 38110 . 2 CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
53, 4elab2g 3663 1 (𝐴𝑉 → (𝐴 ∈ CoElEqvRels ↔ ≀ ( E ↾ 𝐴) ∈ EqvRels ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098   E cep 5576  ccnv 5672  cres 5675  ccoss 37701   EqvRels ceqvrels 37717   CoElEqvRels ccoeleqvrels 37719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3420  df-in 3948  df-br 5145  df-opab 5207  df-xp 5679  df-res 5685  df-coss 37935  df-coeleqvrels 38110
This theorem is referenced by:  elcoeleqvrelsrel  38120
  Copyright terms: Public domain W3C validator