Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcoeleqvrels Structured version   Visualization version   GIF version

Theorem elcoeleqvrels 36708
Description: Elementhood in the coelement equivalence relations class. (Contributed by Peter Mazsa, 24-Jul-2023.)
Assertion
Ref Expression
elcoeleqvrels (𝐴𝑉 → (𝐴 ∈ CoElEqvRels ↔ ≀ ( E ↾ 𝐴) ∈ EqvRels ))

Proof of Theorem elcoeleqvrels
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 reseq2 5886 . . . 4 (𝑎 = 𝐴 → ( E ↾ 𝑎) = ( E ↾ 𝐴))
21cosseqd 36551 . . 3 (𝑎 = 𝐴 → ≀ ( E ↾ 𝑎) = ≀ ( E ↾ 𝐴))
32eleq1d 2823 . 2 (𝑎 = 𝐴 → ( ≀ ( E ↾ 𝑎) ∈ EqvRels ↔ ≀ ( E ↾ 𝐴) ∈ EqvRels ))
4 df-coeleqvrels 36699 . 2 CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
53, 4elab2g 3611 1 (𝐴𝑉 → (𝐴 ∈ CoElEqvRels ↔ ≀ ( E ↾ 𝐴) ∈ EqvRels ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106   E cep 5494  ccnv 5588  cres 5591  ccoss 36333   EqvRels ceqvrels 36349   CoElEqvRels ccoeleqvrels 36351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-in 3894  df-br 5075  df-opab 5137  df-xp 5595  df-res 5601  df-coss 36537  df-coeleqvrels 36699
This theorem is referenced by:  elcoeleqvrelsrel  36709
  Copyright terms: Public domain W3C validator