Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcoeleqvrels Structured version   Visualization version   GIF version

Theorem elcoeleqvrels 38586
Description: Elementhood in the coelement equivalence relations class. (Contributed by Peter Mazsa, 24-Jul-2023.)
Assertion
Ref Expression
elcoeleqvrels (𝐴𝑉 → (𝐴 ∈ CoElEqvRels ↔ ≀ ( E ↾ 𝐴) ∈ EqvRels ))

Proof of Theorem elcoeleqvrels
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 reseq2 5945 . . . 4 (𝑎 = 𝐴 → ( E ↾ 𝑎) = ( E ↾ 𝐴))
21cosseqd 38419 . . 3 (𝑎 = 𝐴 → ≀ ( E ↾ 𝑎) = ≀ ( E ↾ 𝐴))
32eleq1d 2813 . 2 (𝑎 = 𝐴 → ( ≀ ( E ↾ 𝑎) ∈ EqvRels ↔ ≀ ( E ↾ 𝐴) ∈ EqvRels ))
4 df-coeleqvrels 38577 . 2 CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
53, 4elab2g 3647 1 (𝐴𝑉 → (𝐴 ∈ CoElEqvRels ↔ ≀ ( E ↾ 𝐴) ∈ EqvRels ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109   E cep 5537  ccnv 5637  cres 5640  ccoss 38169   EqvRels ceqvrels 38185   CoElEqvRels ccoeleqvrels 38187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-in 3921  df-br 5108  df-opab 5170  df-xp 5644  df-res 5650  df-coss 38402  df-coeleqvrels 38577
This theorem is referenced by:  elcoeleqvrelsrel  38587
  Copyright terms: Public domain W3C validator