![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoeleqvrels | Structured version Visualization version GIF version |
Description: Alternate definition of the coelement equivalence relations class. Other alternate definitions should be based on eqvrelcoss2 38143, eqvrelcoss3 38142 and eqvrelcoss4 38144 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.) |
Ref | Expression |
---|---|
dfcoeleqvrels | ⊢ CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coeleqvrels 38110 | . 2 ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } | |
2 | df-coels 37936 | . . . 4 ⊢ ∼ 𝑎 = ≀ (◡ E ↾ 𝑎) | |
3 | 2 | eleq1i 2816 | . . 3 ⊢ ( ∼ 𝑎 ∈ EqvRels ↔ ≀ (◡ E ↾ 𝑎) ∈ EqvRels ) |
4 | 3 | abbii 2795 | . 2 ⊢ {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
5 | 1, 4 | eqtr4i 2756 | 1 ⊢ CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 {cab 2702 E cep 5576 ◡ccnv 5672 ↾ cres 5675 ≀ ccoss 37701 ∼ ccoels 37702 EqvRels ceqvrels 37717 CoElEqvRels ccoeleqvrels 37719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-coels 37936 df-coeleqvrels 38110 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |