Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcoeleqvrels Structured version   Visualization version   GIF version

Theorem dfcoeleqvrels 38145
Description: Alternate definition of the coelement equivalence relations class. Other alternate definitions should be based on eqvrelcoss2 38143, eqvrelcoss3 38142 and eqvrelcoss4 38144 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.)
Assertion
Ref Expression
dfcoeleqvrels CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels }

Proof of Theorem dfcoeleqvrels
StepHypRef Expression
1 df-coeleqvrels 38110 . 2 CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
2 df-coels 37936 . . . 4 𝑎 = ≀ ( E ↾ 𝑎)
32eleq1i 2816 . . 3 ( ∼ 𝑎 ∈ EqvRels ↔ ≀ ( E ↾ 𝑎) ∈ EqvRels )
43abbii 2795 . 2 {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
51, 4eqtr4i 2756 1 CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels }
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  {cab 2702   E cep 5576  ccnv 5672  cres 5675  ccoss 37701  ccoels 37702   EqvRels ceqvrels 37717   CoElEqvRels ccoeleqvrels 37719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-coels 37936  df-coeleqvrels 38110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator