![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoeleqvrels | Structured version Visualization version GIF version |
Description: Alternate definition of the coelement equivalence relations class. Other alternate definitions should be based on eqvrelcoss2 37489, eqvrelcoss3 37488 and eqvrelcoss4 37490 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.) |
Ref | Expression |
---|---|
dfcoeleqvrels | ⊢ CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coeleqvrels 37456 | . 2 ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } | |
2 | df-coels 37282 | . . . 4 ⊢ ∼ 𝑎 = ≀ (◡ E ↾ 𝑎) | |
3 | 2 | eleq1i 2825 | . . 3 ⊢ ( ∼ 𝑎 ∈ EqvRels ↔ ≀ (◡ E ↾ 𝑎) ∈ EqvRels ) |
4 | 3 | abbii 2803 | . 2 ⊢ {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
5 | 1, 4 | eqtr4i 2764 | 1 ⊢ CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 {cab 2710 E cep 5580 ◡ccnv 5676 ↾ cres 5679 ≀ ccoss 37043 ∼ ccoels 37044 EqvRels ceqvrels 37059 CoElEqvRels ccoeleqvrels 37061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-coels 37282 df-coeleqvrels 37456 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |