Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoeleqvrels | Structured version Visualization version GIF version |
Description: Alternate definition of the coelement equivalence relations class. Other alternate definitions should be based on eqvrelcoss2 36839, eqvrelcoss3 36838 and eqvrelcoss4 36840 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.) |
Ref | Expression |
---|---|
dfcoeleqvrels | ⊢ CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coeleqvrels 36806 | . 2 ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } | |
2 | df-coels 36632 | . . . 4 ⊢ ∼ 𝑎 = ≀ (◡ E ↾ 𝑎) | |
3 | 2 | eleq1i 2827 | . . 3 ⊢ ( ∼ 𝑎 ∈ EqvRels ↔ ≀ (◡ E ↾ 𝑎) ∈ EqvRels ) |
4 | 3 | abbii 2806 | . 2 ⊢ {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
5 | 1, 4 | eqtr4i 2767 | 1 ⊢ CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 {cab 2713 E cep 5505 ◡ccnv 5599 ↾ cres 5602 ≀ ccoss 36387 ∼ ccoels 36388 EqvRels ceqvrels 36403 CoElEqvRels ccoeleqvrels 36405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-coels 36632 df-coeleqvrels 36806 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |