Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcoeleqvrels Structured version   Visualization version   GIF version

Theorem dfcoeleqvrels 38644
Description: Alternate definition of the coelement equivalence relations class. Other alternate definitions should be based on eqvrelcoss2 38642, eqvrelcoss3 38641 and eqvrelcoss4 38643 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.)
Assertion
Ref Expression
dfcoeleqvrels CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels }

Proof of Theorem dfcoeleqvrels
StepHypRef Expression
1 df-coeleqvrels 38609 . 2 CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
2 df-coels 38435 . . . 4 𝑎 = ≀ ( E ↾ 𝑎)
32eleq1i 2826 . . 3 ( ∼ 𝑎 ∈ EqvRels ↔ ≀ ( E ↾ 𝑎) ∈ EqvRels )
43abbii 2803 . 2 {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
51, 4eqtr4i 2762 1 CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels }
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2714   E cep 5557  ccnv 5658  cres 5661  ccoss 38204  ccoels 38205   EqvRels ceqvrels 38220   CoElEqvRels ccoeleqvrels 38222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-coels 38435  df-coeleqvrels 38609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator