| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoeleqvrels | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the coelement equivalence relations class. Other alternate definitions should be based on eqvrelcoss2 38642, eqvrelcoss3 38641 and eqvrelcoss4 38643 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| Ref | Expression |
|---|---|
| dfcoeleqvrels | ⊢ CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coeleqvrels 38609 | . 2 ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } | |
| 2 | df-coels 38435 | . . . 4 ⊢ ∼ 𝑎 = ≀ (◡ E ↾ 𝑎) | |
| 3 | 2 | eleq1i 2826 | . . 3 ⊢ ( ∼ 𝑎 ∈ EqvRels ↔ ≀ (◡ E ↾ 𝑎) ∈ EqvRels ) |
| 4 | 3 | abbii 2803 | . 2 ⊢ {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
| 5 | 1, 4 | eqtr4i 2762 | 1 ⊢ CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2714 E cep 5557 ◡ccnv 5658 ↾ cres 5661 ≀ ccoss 38204 ∼ ccoels 38205 EqvRels ceqvrels 38220 CoElEqvRels ccoeleqvrels 38222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-coels 38435 df-coeleqvrels 38609 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |