Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoeleqvrels | Structured version Visualization version GIF version |
Description: Alternate definition of the coelement equivalence relations class. Other alternate definitions should be based on eqvrelcoss2 36711, eqvrelcoss3 36710 and eqvrelcoss4 36712 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.) |
Ref | Expression |
---|---|
dfcoeleqvrels | ⊢ CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coeleqvrels 36678 | . 2 ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } | |
2 | df-coels 36517 | . . . 4 ⊢ ∼ 𝑎 = ≀ (◡ E ↾ 𝑎) | |
3 | 2 | eleq1i 2830 | . . 3 ⊢ ( ∼ 𝑎 ∈ EqvRels ↔ ≀ (◡ E ↾ 𝑎) ∈ EqvRels ) |
4 | 3 | abbii 2809 | . 2 ⊢ {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
5 | 1, 4 | eqtr4i 2770 | 1 ⊢ CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 {cab 2716 E cep 5493 ◡ccnv 5587 ↾ cres 5590 ≀ ccoss 36312 ∼ ccoels 36313 EqvRels ceqvrels 36328 CoElEqvRels ccoeleqvrels 36330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-coels 36517 df-coeleqvrels 36678 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |