Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcoeleqvrels Structured version   Visualization version   GIF version

Theorem dfcoeleqvrels 38603
Description: Alternate definition of the coelement equivalence relations class. Other alternate definitions should be based on eqvrelcoss2 38601, eqvrelcoss3 38600 and eqvrelcoss4 38602 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.)
Assertion
Ref Expression
dfcoeleqvrels CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels }

Proof of Theorem dfcoeleqvrels
StepHypRef Expression
1 df-coeleqvrels 38568 . 2 CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
2 df-coels 38394 . . . 4 𝑎 = ≀ ( E ↾ 𝑎)
32eleq1i 2830 . . 3 ( ∼ 𝑎 ∈ EqvRels ↔ ≀ ( E ↾ 𝑎) ∈ EqvRels )
43abbii 2807 . 2 {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
51, 4eqtr4i 2766 1 CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels }
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  {cab 2712   E cep 5588  ccnv 5688  cres 5691  ccoss 38162  ccoels 38163   EqvRels ceqvrels 38178   CoElEqvRels ccoeleqvrels 38180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-coels 38394  df-coeleqvrels 38568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator