Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coeleqvrel Structured version   Visualization version   GIF version

Definition df-coeleqvrel 36627
Description: Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 36662. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 36636. (Contributed by Peter Mazsa, 11-Dec-2021.)
Assertion
Ref Expression
df-coeleqvrel ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))

Detailed syntax breakdown of Definition df-coeleqvrel
StepHypRef Expression
1 cA . . 3 class 𝐴
21wcoeleqvrel 36279 . 2 wff CoElEqvRel 𝐴
3 cep 5485 . . . . . 6 class E
43ccnv 5579 . . . . 5 class E
54, 1cres 5582 . . . 4 class ( E ↾ 𝐴)
65ccoss 36260 . . 3 class ≀ ( E ↾ 𝐴)
76weqvrel 36277 . 2 wff EqvRel ≀ ( E ↾ 𝐴)
82, 7wb 205 1 wff ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  elcoeleqvrelsrel  36636  dfcoeleqvrel  36662  eqvreldmqs  36714
  Copyright terms: Public domain W3C validator