Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coeleqvrel Structured version   Visualization version   GIF version

Definition df-coeleqvrel 38571
Description: Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 38606. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38580. (Contributed by Peter Mazsa, 11-Dec-2021.)
Assertion
Ref Expression
df-coeleqvrel ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))

Detailed syntax breakdown of Definition df-coeleqvrel
StepHypRef Expression
1 cA . . 3 class 𝐴
21wcoeleqvrel 38181 . 2 wff CoElEqvRel 𝐴
3 cep 5530 . . . . . 6 class E
43ccnv 5630 . . . . 5 class E
54, 1cres 5633 . . . 4 class ( E ↾ 𝐴)
65ccoss 38162 . . 3 class ≀ ( E ↾ 𝐴)
76weqvrel 38179 . 2 wff EqvRel ≀ ( E ↾ 𝐴)
82, 7wb 206 1 wff ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  elcoeleqvrelsrel  38580  dfcoeleqvrel  38606  eqvreldmqs  38660  eldisjim  38769
  Copyright terms: Public domain W3C validator