Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrel | Structured version Visualization version GIF version |
Description: Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 36735. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 36709. (Contributed by Peter Mazsa, 11-Dec-2021.) |
Ref | Expression |
---|---|
df-coeleqvrel | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wcoeleqvrel 36352 | . 2 wff CoElEqvRel 𝐴 |
3 | cep 5494 | . . . . . 6 class E | |
4 | 3 | ccnv 5588 | . . . . 5 class ◡ E |
5 | 4, 1 | cres 5591 | . . . 4 class (◡ E ↾ 𝐴) |
6 | 5 | ccoss 36333 | . . 3 class ≀ (◡ E ↾ 𝐴) |
7 | 6 | weqvrel 36350 | . 2 wff EqvRel ≀ (◡ E ↾ 𝐴) |
8 | 2, 7 | wb 205 | 1 wff ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
Colors of variables: wff setvar class |
This definition is referenced by: elcoeleqvrelsrel 36709 dfcoeleqvrel 36735 eqvreldmqs 36787 |
Copyright terms: Public domain | W3C validator |