Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrel | Structured version Visualization version GIF version |
Description: Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 36358. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 36332. (Contributed by Peter Mazsa, 11-Dec-2021.) |
Ref | Expression |
---|---|
df-coeleqvrel | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wcoeleqvrel 35975 | . 2 wff CoElEqvRel 𝐴 |
3 | cep 5433 | . . . . . 6 class E | |
4 | 3 | ccnv 5524 | . . . . 5 class ◡ E |
5 | 4, 1 | cres 5527 | . . . 4 class (◡ E ↾ 𝐴) |
6 | 5 | ccoss 35956 | . . 3 class ≀ (◡ E ↾ 𝐴) |
7 | 6 | weqvrel 35973 | . 2 wff EqvRel ≀ (◡ E ↾ 𝐴) |
8 | 2, 7 | wb 209 | 1 wff ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
Colors of variables: wff setvar class |
This definition is referenced by: elcoeleqvrelsrel 36332 dfcoeleqvrel 36358 eqvreldmqs 36410 |
Copyright terms: Public domain | W3C validator |