Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coeleqvrel Structured version   Visualization version   GIF version

Definition df-coeleqvrel 38568
Description: Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 38603. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38577. (Contributed by Peter Mazsa, 11-Dec-2021.)
Assertion
Ref Expression
df-coeleqvrel ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))

Detailed syntax breakdown of Definition df-coeleqvrel
StepHypRef Expression
1 cA . . 3 class 𝐴
21wcoeleqvrel 38178 . 2 wff CoElEqvRel 𝐴
3 cep 5518 . . . . . 6 class E
43ccnv 5618 . . . . 5 class E
54, 1cres 5621 . . . 4 class ( E ↾ 𝐴)
65ccoss 38159 . . 3 class ≀ ( E ↾ 𝐴)
76weqvrel 38176 . 2 wff EqvRel ≀ ( E ↾ 𝐴)
82, 7wb 206 1 wff ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  elcoeleqvrelsrel  38577  dfcoeleqvrel  38603  eqvreldmqs  38657  eldisjim  38766
  Copyright terms: Public domain W3C validator