| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrel | Structured version Visualization version GIF version | ||
| Description: Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 38606. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38580. (Contributed by Peter Mazsa, 11-Dec-2021.) |
| Ref | Expression |
|---|---|
| df-coeleqvrel | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wcoeleqvrel 38181 | . 2 wff CoElEqvRel 𝐴 |
| 3 | cep 5530 | . . . . . 6 class E | |
| 4 | 3 | ccnv 5630 | . . . . 5 class ◡ E |
| 5 | 4, 1 | cres 5633 | . . . 4 class (◡ E ↾ 𝐴) |
| 6 | 5 | ccoss 38162 | . . 3 class ≀ (◡ E ↾ 𝐴) |
| 7 | 6 | weqvrel 38179 | . 2 wff EqvRel ≀ (◡ E ↾ 𝐴) |
| 8 | 2, 7 | wb 206 | 1 wff ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: elcoeleqvrelsrel 38580 dfcoeleqvrel 38606 eqvreldmqs 38660 eldisjim 38769 |
| Copyright terms: Public domain | W3C validator |