![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrel | Structured version Visualization version GIF version |
Description: Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 38604. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38578. (Contributed by Peter Mazsa, 11-Dec-2021.) |
Ref | Expression |
---|---|
df-coeleqvrel | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wcoeleqvrel 38181 | . 2 wff CoElEqvRel 𝐴 |
3 | cep 5588 | . . . . . 6 class E | |
4 | 3 | ccnv 5688 | . . . . 5 class ◡ E |
5 | 4, 1 | cres 5691 | . . . 4 class (◡ E ↾ 𝐴) |
6 | 5 | ccoss 38162 | . . 3 class ≀ (◡ E ↾ 𝐴) |
7 | 6 | weqvrel 38179 | . 2 wff EqvRel ≀ (◡ E ↾ 𝐴) |
8 | 2, 7 | wb 206 | 1 wff ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
Colors of variables: wff setvar class |
This definition is referenced by: elcoeleqvrelsrel 38578 dfcoeleqvrel 38604 eqvreldmqs 38657 eldisjim 38766 |
Copyright terms: Public domain | W3C validator |