![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrel | Structured version Visualization version GIF version |
Description: Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 38578. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38552. (Contributed by Peter Mazsa, 11-Dec-2021.) |
Ref | Expression |
---|---|
df-coeleqvrel | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wcoeleqvrel 38154 | . 2 wff CoElEqvRel 𝐴 |
3 | cep 5598 | . . . . . 6 class E | |
4 | 3 | ccnv 5699 | . . . . 5 class ◡ E |
5 | 4, 1 | cres 5702 | . . . 4 class (◡ E ↾ 𝐴) |
6 | 5 | ccoss 38135 | . . 3 class ≀ (◡ E ↾ 𝐴) |
7 | 6 | weqvrel 38152 | . 2 wff EqvRel ≀ (◡ E ↾ 𝐴) |
8 | 2, 7 | wb 206 | 1 wff ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
Colors of variables: wff setvar class |
This definition is referenced by: elcoeleqvrelsrel 38552 dfcoeleqvrel 38578 eqvreldmqs 38631 eldisjim 38740 |
Copyright terms: Public domain | W3C validator |