Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coeleqvrel Structured version   Visualization version   GIF version

Definition df-coeleqvrel 37549
Description: Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 37584. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 37558. (Contributed by Peter Mazsa, 11-Dec-2021.)
Assertion
Ref Expression
df-coeleqvrel ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))

Detailed syntax breakdown of Definition df-coeleqvrel
StepHypRef Expression
1 cA . . 3 class 𝐴
21wcoeleqvrel 37154 . 2 wff CoElEqvRel 𝐴
3 cep 5579 . . . . . 6 class E
43ccnv 5675 . . . . 5 class E
54, 1cres 5678 . . . 4 class ( E ↾ 𝐴)
65ccoss 37135 . . 3 class ≀ ( E ↾ 𝐴)
76weqvrel 37152 . 2 wff EqvRel ≀ ( E ↾ 𝐴)
82, 7wb 205 1 wff ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  elcoeleqvrelsrel  37558  dfcoeleqvrel  37584  eqvreldmqs  37637  eldisjim  37746
  Copyright terms: Public domain W3C validator