Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrel | Structured version Visualization version GIF version |
Description: Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 36662. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 36636. (Contributed by Peter Mazsa, 11-Dec-2021.) |
Ref | Expression |
---|---|
df-coeleqvrel | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wcoeleqvrel 36279 | . 2 wff CoElEqvRel 𝐴 |
3 | cep 5485 | . . . . . 6 class E | |
4 | 3 | ccnv 5579 | . . . . 5 class ◡ E |
5 | 4, 1 | cres 5582 | . . . 4 class (◡ E ↾ 𝐴) |
6 | 5 | ccoss 36260 | . . 3 class ≀ (◡ E ↾ 𝐴) |
7 | 6 | weqvrel 36277 | . 2 wff EqvRel ≀ (◡ E ↾ 𝐴) |
8 | 2, 7 | wb 205 | 1 wff ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
Colors of variables: wff setvar class |
This definition is referenced by: elcoeleqvrelsrel 36636 dfcoeleqvrel 36662 eqvreldmqs 36714 |
Copyright terms: Public domain | W3C validator |