Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coeleqvrel Structured version   Visualization version   GIF version

Definition df-coeleqvrel 38578
Description: Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 38613. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38587. (Contributed by Peter Mazsa, 11-Dec-2021.)
Assertion
Ref Expression
df-coeleqvrel ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))

Detailed syntax breakdown of Definition df-coeleqvrel
StepHypRef Expression
1 cA . . 3 class 𝐴
21wcoeleqvrel 38188 . 2 wff CoElEqvRel 𝐴
3 cep 5537 . . . . . 6 class E
43ccnv 5637 . . . . 5 class E
54, 1cres 5640 . . . 4 class ( E ↾ 𝐴)
65ccoss 38169 . . 3 class ≀ ( E ↾ 𝐴)
76weqvrel 38186 . 2 wff EqvRel ≀ ( E ↾ 𝐴)
82, 7wb 206 1 wff ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  elcoeleqvrelsrel  38587  dfcoeleqvrel  38613  eqvreldmqs  38667  eldisjim  38776
  Copyright terms: Public domain W3C validator