![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrel | Structured version Visualization version GIF version |
Description: Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 37796. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 37770. (Contributed by Peter Mazsa, 11-Dec-2021.) |
Ref | Expression |
---|---|
df-coeleqvrel | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wcoeleqvrel 37366 | . 2 wff CoElEqvRel 𝐴 |
3 | cep 5580 | . . . . . 6 class E | |
4 | 3 | ccnv 5676 | . . . . 5 class ◡ E |
5 | 4, 1 | cres 5679 | . . . 4 class (◡ E ↾ 𝐴) |
6 | 5 | ccoss 37347 | . . 3 class ≀ (◡ E ↾ 𝐴) |
7 | 6 | weqvrel 37364 | . 2 wff EqvRel ≀ (◡ E ↾ 𝐴) |
8 | 2, 7 | wb 205 | 1 wff ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
Colors of variables: wff setvar class |
This definition is referenced by: elcoeleqvrelsrel 37770 dfcoeleqvrel 37796 eqvreldmqs 37849 eldisjim 37958 |
Copyright terms: Public domain | W3C validator |