Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coeleqvrel Structured version   Visualization version   GIF version

Definition df-coeleqvrel 37761
Description: Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 37796. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 37770. (Contributed by Peter Mazsa, 11-Dec-2021.)
Assertion
Ref Expression
df-coeleqvrel ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))

Detailed syntax breakdown of Definition df-coeleqvrel
StepHypRef Expression
1 cA . . 3 class 𝐴
21wcoeleqvrel 37366 . 2 wff CoElEqvRel 𝐴
3 cep 5580 . . . . . 6 class E
43ccnv 5676 . . . . 5 class E
54, 1cres 5679 . . . 4 class ( E ↾ 𝐴)
65ccoss 37347 . . 3 class ≀ ( E ↾ 𝐴)
76weqvrel 37364 . 2 wff EqvRel ≀ ( E ↾ 𝐴)
82, 7wb 205 1 wff ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  elcoeleqvrelsrel  37770  dfcoeleqvrel  37796  eqvreldmqs  37849  eldisjim  37958
  Copyright terms: Public domain W3C validator