| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrel | Structured version Visualization version GIF version | ||
| Description: Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 38603. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38577. (Contributed by Peter Mazsa, 11-Dec-2021.) |
| Ref | Expression |
|---|---|
| df-coeleqvrel | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wcoeleqvrel 38178 | . 2 wff CoElEqvRel 𝐴 |
| 3 | cep 5518 | . . . . . 6 class E | |
| 4 | 3 | ccnv 5618 | . . . . 5 class ◡ E |
| 5 | 4, 1 | cres 5621 | . . . 4 class (◡ E ↾ 𝐴) |
| 6 | 5 | ccoss 38159 | . . 3 class ≀ (◡ E ↾ 𝐴) |
| 7 | 6 | weqvrel 38176 | . 2 wff EqvRel ≀ (◡ E ↾ 𝐴) |
| 8 | 2, 7 | wb 206 | 1 wff ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: elcoeleqvrelsrel 38577 dfcoeleqvrel 38603 eqvreldmqs 38657 eldisjim 38766 |
| Copyright terms: Public domain | W3C validator |