Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coeleqvrel Structured version   Visualization version   GIF version

Definition df-coeleqvrel 38693
Description: Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 38728. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38702. (Contributed by Peter Mazsa, 11-Dec-2021.)
Assertion
Ref Expression
df-coeleqvrel ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))

Detailed syntax breakdown of Definition df-coeleqvrel
StepHypRef Expression
1 cA . . 3 class 𝐴
21wcoeleqvrel 38251 . 2 wff CoElEqvRel 𝐴
3 cep 5513 . . . . . 6 class E
43ccnv 5613 . . . . 5 class E
54, 1cres 5616 . . . 4 class ( E ↾ 𝐴)
65ccoss 38232 . . 3 class ≀ ( E ↾ 𝐴)
76weqvrel 38249 . 2 wff EqvRel ≀ ( E ↾ 𝐴)
82, 7wb 206 1 wff ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  elcoeleqvrelsrel  38702  dfcoeleqvrel  38728  eqvreldmqs  38783  eldisjim  38892
  Copyright terms: Public domain W3C validator