| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrel | Structured version Visualization version GIF version | ||
| Description: Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 38645. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38619. (Contributed by Peter Mazsa, 11-Dec-2021.) |
| Ref | Expression |
|---|---|
| df-coeleqvrel | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wcoeleqvrel 38223 | . 2 wff CoElEqvRel 𝐴 |
| 3 | cep 5557 | . . . . . 6 class E | |
| 4 | 3 | ccnv 5658 | . . . . 5 class ◡ E |
| 5 | 4, 1 | cres 5661 | . . . 4 class (◡ E ↾ 𝐴) |
| 6 | 5 | ccoss 38204 | . . 3 class ≀ (◡ E ↾ 𝐴) |
| 7 | 6 | weqvrel 38221 | . 2 wff EqvRel ≀ (◡ E ↾ 𝐴) |
| 8 | 2, 7 | wb 206 | 1 wff ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: elcoeleqvrelsrel 38619 dfcoeleqvrel 38645 eqvreldmqs 38698 eldisjim 38807 |
| Copyright terms: Public domain | W3C validator |