Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coeleqvrel Structured version   Visualization version   GIF version

Definition df-coeleqvrel 38610
Description: Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 38645. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38619. (Contributed by Peter Mazsa, 11-Dec-2021.)
Assertion
Ref Expression
df-coeleqvrel ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))

Detailed syntax breakdown of Definition df-coeleqvrel
StepHypRef Expression
1 cA . . 3 class 𝐴
21wcoeleqvrel 38223 . 2 wff CoElEqvRel 𝐴
3 cep 5557 . . . . . 6 class E
43ccnv 5658 . . . . 5 class E
54, 1cres 5661 . . . 4 class ( E ↾ 𝐴)
65ccoss 38204 . . 3 class ≀ ( E ↾ 𝐴)
76weqvrel 38221 . 2 wff EqvRel ≀ ( E ↾ 𝐴)
82, 7wb 206 1 wff ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  elcoeleqvrelsrel  38619  dfcoeleqvrel  38645  eqvreldmqs  38698  eldisjim  38807
  Copyright terms: Public domain W3C validator