| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coeleqvrel | Structured version Visualization version GIF version | ||
| Description: Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 38728. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38702. (Contributed by Peter Mazsa, 11-Dec-2021.) |
| Ref | Expression |
|---|---|
| df-coeleqvrel | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wcoeleqvrel 38251 | . 2 wff CoElEqvRel 𝐴 |
| 3 | cep 5513 | . . . . . 6 class E | |
| 4 | 3 | ccnv 5613 | . . . . 5 class ◡ E |
| 5 | 4, 1 | cres 5616 | . . . 4 class (◡ E ↾ 𝐴) |
| 6 | 5 | ccoss 38232 | . . 3 class ≀ (◡ E ↾ 𝐴) |
| 7 | 6 | weqvrel 38249 | . 2 wff EqvRel ≀ (◡ E ↾ 𝐴) |
| 8 | 2, 7 | wb 206 | 1 wff ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: elcoeleqvrelsrel 38702 dfcoeleqvrel 38728 eqvreldmqs 38783 eldisjim 38892 |
| Copyright terms: Public domain | W3C validator |