| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elcoeleqvrelsrel | Structured version Visualization version GIF version | ||
| Description: For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate. (Contributed by Peter Mazsa, 24-Jul-2023.) |
| Ref | Expression |
|---|---|
| elcoeleqvrelsrel | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ CoElEqvRels ↔ CoElEqvRel 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elcoeleqvrels 38579 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ CoElEqvRels ↔ ≀ (◡ E ↾ 𝐴) ∈ EqvRels )) | |
| 2 | 1cosscnvepresex 38405 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ≀ (◡ E ↾ 𝐴) ∈ V) | |
| 3 | eleqvrelsrel 38578 | . . . 4 ⊢ ( ≀ (◡ E ↾ 𝐴) ∈ V → ( ≀ (◡ E ↾ 𝐴) ∈ EqvRels ↔ EqvRel ≀ (◡ E ↾ 𝐴))) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ( ≀ (◡ E ↾ 𝐴) ∈ EqvRels ↔ EqvRel ≀ (◡ E ↾ 𝐴))) |
| 5 | 1, 4 | bitrd 279 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ CoElEqvRels ↔ EqvRel ≀ (◡ E ↾ 𝐴))) |
| 6 | df-coeleqvrel 38571 | . 2 ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) | |
| 7 | 5, 6 | bitr4di 289 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ CoElEqvRels ↔ CoElEqvRel 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3444 E cep 5530 ◡ccnv 5630 ↾ cres 5633 ≀ ccoss 38162 EqvRels ceqvrels 38178 EqvRel weqvrel 38179 CoElEqvRels ccoeleqvrels 38180 CoElEqvRel wcoeleqvrel 38181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-id 5526 df-eprel 5531 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-coss 38395 df-rels 38469 df-ssr 38482 df-refs 38494 df-refrels 38495 df-refrel 38496 df-syms 38526 df-symrels 38527 df-symrel 38528 df-trs 38556 df-trrels 38557 df-trrel 38558 df-eqvrels 38568 df-eqvrel 38569 df-coeleqvrels 38570 df-coeleqvrel 38571 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |