Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcoeleqvrelsrel Structured version   Visualization version   GIF version

Theorem elcoeleqvrelsrel 38593
Description: For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate. (Contributed by Peter Mazsa, 24-Jul-2023.)
Assertion
Ref Expression
elcoeleqvrelsrel (𝐴𝑉 → (𝐴 ∈ CoElEqvRels ↔ CoElEqvRel 𝐴))

Proof of Theorem elcoeleqvrelsrel
StepHypRef Expression
1 elcoeleqvrels 38592 . . 3 (𝐴𝑉 → (𝐴 ∈ CoElEqvRels ↔ ≀ ( E ↾ 𝐴) ∈ EqvRels ))
2 1cosscnvepresex 38418 . . . 4 (𝐴𝑉 → ≀ ( E ↾ 𝐴) ∈ V)
3 eleqvrelsrel 38591 . . . 4 ( ≀ ( E ↾ 𝐴) ∈ V → ( ≀ ( E ↾ 𝐴) ∈ EqvRels ↔ EqvRel ≀ ( E ↾ 𝐴)))
42, 3syl 17 . . 3 (𝐴𝑉 → ( ≀ ( E ↾ 𝐴) ∈ EqvRels ↔ EqvRel ≀ ( E ↾ 𝐴)))
51, 4bitrd 279 . 2 (𝐴𝑉 → (𝐴 ∈ CoElEqvRels ↔ EqvRel ≀ ( E ↾ 𝐴)))
6 df-coeleqvrel 38584 . 2 ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
75, 6bitr4di 289 1 (𝐴𝑉 → (𝐴 ∈ CoElEqvRels ↔ CoElEqvRel 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  Vcvv 3436   E cep 5518  ccnv 5618  cres 5621  ccoss 38175   EqvRels ceqvrels 38191   EqvRel weqvrel 38192   CoElEqvRels ccoeleqvrels 38193   CoElEqvRel wcoeleqvrel 38194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-id 5514  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-coss 38408  df-rels 38482  df-ssr 38495  df-refs 38507  df-refrels 38508  df-refrel 38509  df-syms 38539  df-symrels 38540  df-symrel 38541  df-trs 38569  df-trrels 38570  df-trrel 38571  df-eqvrels 38581  df-eqvrel 38582  df-coeleqvrels 38583  df-coeleqvrel 38584
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator