Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcoeleqvrelsrel Structured version   Visualization version   GIF version

Theorem elcoeleqvrelsrel 36709
Description: For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate. (Contributed by Peter Mazsa, 24-Jul-2023.)
Assertion
Ref Expression
elcoeleqvrelsrel (𝐴𝑉 → (𝐴 ∈ CoElEqvRels ↔ CoElEqvRel 𝐴))

Proof of Theorem elcoeleqvrelsrel
StepHypRef Expression
1 elcoeleqvrels 36708 . . 3 (𝐴𝑉 → (𝐴 ∈ CoElEqvRels ↔ ≀ ( E ↾ 𝐴) ∈ EqvRels ))
2 1cosscnvepresex 36544 . . . 4 (𝐴𝑉 → ≀ ( E ↾ 𝐴) ∈ V)
3 eleqvrelsrel 36707 . . . 4 ( ≀ ( E ↾ 𝐴) ∈ V → ( ≀ ( E ↾ 𝐴) ∈ EqvRels ↔ EqvRel ≀ ( E ↾ 𝐴)))
42, 3syl 17 . . 3 (𝐴𝑉 → ( ≀ ( E ↾ 𝐴) ∈ EqvRels ↔ EqvRel ≀ ( E ↾ 𝐴)))
51, 4bitrd 278 . 2 (𝐴𝑉 → (𝐴 ∈ CoElEqvRels ↔ EqvRel ≀ ( E ↾ 𝐴)))
6 df-coeleqvrel 36700 . 2 ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
75, 6bitr4di 289 1 (𝐴𝑉 → (𝐴 ∈ CoElEqvRels ↔ CoElEqvRel 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  Vcvv 3432   E cep 5494  ccnv 5588  cres 5591  ccoss 36333   EqvRels ceqvrels 36349   EqvRel weqvrel 36350   CoElEqvRels ccoeleqvrels 36351   CoElEqvRel wcoeleqvrel 36352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-id 5489  df-eprel 5495  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-coss 36537  df-rels 36603  df-ssr 36616  df-refs 36628  df-refrels 36629  df-refrel 36630  df-syms 36656  df-symrels 36657  df-symrel 36658  df-trs 36686  df-trrels 36687  df-trrel 36688  df-eqvrels 36697  df-eqvrel 36698  df-coeleqvrels 36699  df-coeleqvrel 36700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator