| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elcoeleqvrelsrel | Structured version Visualization version GIF version | ||
| Description: For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate. (Contributed by Peter Mazsa, 24-Jul-2023.) |
| Ref | Expression |
|---|---|
| elcoeleqvrelsrel | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ CoElEqvRels ↔ CoElEqvRel 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elcoeleqvrels 38592 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ CoElEqvRels ↔ ≀ (◡ E ↾ 𝐴) ∈ EqvRels )) | |
| 2 | 1cosscnvepresex 38418 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ≀ (◡ E ↾ 𝐴) ∈ V) | |
| 3 | eleqvrelsrel 38591 | . . . 4 ⊢ ( ≀ (◡ E ↾ 𝐴) ∈ V → ( ≀ (◡ E ↾ 𝐴) ∈ EqvRels ↔ EqvRel ≀ (◡ E ↾ 𝐴))) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ( ≀ (◡ E ↾ 𝐴) ∈ EqvRels ↔ EqvRel ≀ (◡ E ↾ 𝐴))) |
| 5 | 1, 4 | bitrd 279 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ CoElEqvRels ↔ EqvRel ≀ (◡ E ↾ 𝐴))) |
| 6 | df-coeleqvrel 38584 | . 2 ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) | |
| 7 | 5, 6 | bitr4di 289 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ CoElEqvRels ↔ CoElEqvRel 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3436 E cep 5518 ◡ccnv 5618 ↾ cres 5621 ≀ ccoss 38175 EqvRels ceqvrels 38191 EqvRel weqvrel 38192 CoElEqvRels ccoeleqvrels 38193 CoElEqvRel wcoeleqvrel 38194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-id 5514 df-eprel 5519 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-coss 38408 df-rels 38482 df-ssr 38495 df-refs 38507 df-refrels 38508 df-refrel 38509 df-syms 38539 df-symrels 38540 df-symrel 38541 df-trs 38569 df-trrels 38570 df-trrel 38571 df-eqvrels 38581 df-eqvrel 38582 df-coeleqvrels 38583 df-coeleqvrel 38584 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |