![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcomember2 | Structured version Visualization version GIF version |
Description: Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 25-Sep-2021.) |
Ref | Expression |
---|---|
dfcomember2 | ⊢ ( CoMembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 / ∼ 𝐴) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcomember 38628 | . 2 ⊢ ( CoMembEr 𝐴 ↔ ∼ 𝐴 ErALTV 𝐴) | |
2 | dferALTV2 38624 | . 2 ⊢ ( ∼ 𝐴 ErALTV 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 / ∼ 𝐴) = 𝐴)) | |
3 | 1, 2 | bitri 275 | 1 ⊢ ( CoMembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 / ∼ 𝐴) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 dom cdm 5700 / cqs 8762 ∼ ccoels 38136 EqvRel weqvrel 38152 ErALTV werALTV 38161 CoMembEr wcomember 38163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 df-qs 8769 df-coels 38368 df-refrel 38468 df-symrel 38500 df-trrel 38530 df-eqvrel 38541 df-dmqs 38595 df-erALTV 38620 df-comember 38622 |
This theorem is referenced by: dfcomember3 38630 |
Copyright terms: Public domain | W3C validator |