| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcomember2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 25-Sep-2021.) |
| Ref | Expression |
|---|---|
| dfcomember2 | ⊢ ( CoMembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 / ∼ 𝐴) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcomember 38649 | . 2 ⊢ ( CoMembEr 𝐴 ↔ ∼ 𝐴 ErALTV 𝐴) | |
| 2 | dferALTV2 38645 | . 2 ⊢ ( ∼ 𝐴 ErALTV 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 / ∼ 𝐴) = 𝐴)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ( CoMembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 / ∼ 𝐴) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 dom cdm 5623 / cqs 8631 ∼ ccoels 38155 EqvRel weqvrel 38171 ErALTV werALTV 38180 CoMembEr wcomember 38182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ec 8634 df-qs 8638 df-coels 38388 df-refrel 38488 df-symrel 38520 df-trrel 38550 df-eqvrel 38561 df-dmqs 38615 df-erALTV 38641 df-comember 38643 |
| This theorem is referenced by: dfcomember3 38651 |
| Copyright terms: Public domain | W3C validator |