Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcomember2 Structured version   Visualization version   GIF version

Theorem dfcomember2 38200
Description: Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 25-Sep-2021.)
Assertion
Ref Expression
dfcomember2 ( CoMembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 /𝐴) = 𝐴))

Proof of Theorem dfcomember2
StepHypRef Expression
1 dfcomember 38199 . 2 ( CoMembEr 𝐴 ↔ ∼ 𝐴 ErALTV 𝐴)
2 dferALTV2 38195 . 2 ( ∼ 𝐴 ErALTV 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 /𝐴) = 𝐴))
31, 2bitri 274 1 ( CoMembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 /𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  dom cdm 5672   / cqs 8720  ccoels 37705   EqvRel weqvrel 37721   ErALTV werALTV 37730   CoMembEr wcomember 37732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5144  df-opab 5206  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ec 8723  df-qs 8727  df-coels 37939  df-refrel 38039  df-symrel 38071  df-trrel 38101  df-eqvrel 38112  df-dmqs 38166  df-erALTV 38191  df-comember 38193
This theorem is referenced by:  dfcomember3  38201
  Copyright terms: Public domain W3C validator