Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brers | Structured version Visualization version GIF version |
Description: Binary equivalence relation with natural domain, see the comment of df-ers 36883. (Contributed by Peter Mazsa, 23-Jul-2021.) |
Ref | Expression |
---|---|
brers | ⊢ (𝐴 ∈ 𝑉 → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ers 36883 | . 2 ⊢ Ers = ( DomainQss ↾ EqvRels ) | |
2 | 1 | eqres 36559 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2104 class class class wbr 5081 EqvRels ceqvrels 36403 DomainQss cdmqss 36410 Ers cers 36412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3341 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-res 5612 df-ers 36883 |
This theorem is referenced by: brerser 36897 |
Copyright terms: Public domain | W3C validator |