Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brers Structured version   Visualization version   GIF version

Theorem brers 38632
Description: Binary equivalence relation with natural domain, see the comment of df-ers 38628. (Contributed by Peter Mazsa, 23-Jul-2021.)
Assertion
Ref Expression
brers (𝐴𝑉 → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴)))

Proof of Theorem brers
StepHypRef Expression
1 df-ers 38628 . 2 Ers = ( DomainQss ↾ EqvRels )
21eqres 38295 1 (𝐴𝑉 → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5102   EqvRels ceqvrels 38158   DomainQss cdmqss 38165   Ers cers 38167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-res 5643  df-ers 38628
This theorem is referenced by:  brerser  38642
  Copyright terms: Public domain W3C validator