Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcomember3 Structured version   Visualization version   GIF version

Theorem dfcomember3 38782
Description: Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.)
Assertion
Ref Expression
dfcomember3 ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))

Proof of Theorem dfcomember3
StepHypRef Expression
1 dfcomember2 38781 . 2 ( CoMembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 /𝐴) = 𝐴))
2 dfcoeleqvrel 38728 . . . 4 ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴)
32bicomi 224 . . 3 ( EqvRel ∼ 𝐴 ↔ CoElEqvRel 𝐴)
4 dmqscoelseq 38769 . . 3 ((dom ∼ 𝐴 /𝐴) = 𝐴 ↔ ( 𝐴 /𝐴) = 𝐴)
53, 4anbi12i 628 . 2 (( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 /𝐴) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
61, 5bitri 275 1 ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541   cuni 4860  dom cdm 5621   / cqs 8630  ccoels 38233   EqvRel weqvrel 38249   CoElEqvRel wcoeleqvrel 38251   CoMembEr wcomember 38260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-eprel 5521  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ec 8633  df-qs 8637  df-coss 38523  df-coels 38524  df-refrel 38614  df-symrel 38646  df-trrel 38680  df-eqvrel 38691  df-coeleqvrel 38693  df-dmqs 38745  df-erALTV 38772  df-comember 38774
This theorem is referenced by:  mainer  38942  mpet  38947
  Copyright terms: Public domain W3C validator