| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcomember3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.) |
| Ref | Expression |
|---|---|
| dfcomember3 | ⊢ ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcomember2 38650 | . 2 ⊢ ( CoMembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 / ∼ 𝐴) = 𝐴)) | |
| 2 | dfcoeleqvrel 38598 | . . . 4 ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴) | |
| 3 | 2 | bicomi 224 | . . 3 ⊢ ( EqvRel ∼ 𝐴 ↔ CoElEqvRel 𝐴) |
| 4 | dmqscoelseq 38638 | . . 3 ⊢ ((dom ∼ 𝐴 / ∼ 𝐴) = 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴) | |
| 5 | 3, 4 | anbi12i 628 | . 2 ⊢ (( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 / ∼ 𝐴) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| 6 | 1, 5 | bitri 275 | 1 ⊢ ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∪ cuni 4861 dom cdm 5623 / cqs 8631 ∼ ccoels 38155 EqvRel weqvrel 38171 CoElEqvRel wcoeleqvrel 38173 CoMembEr wcomember 38182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-eprel 5523 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ec 8634 df-qs 8638 df-coss 38387 df-coels 38388 df-refrel 38488 df-symrel 38520 df-trrel 38550 df-eqvrel 38561 df-coeleqvrel 38563 df-dmqs 38615 df-erALTV 38641 df-comember 38643 |
| This theorem is referenced by: mainer 38811 mpet 38816 |
| Copyright terms: Public domain | W3C validator |