| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcomember3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.) |
| Ref | Expression |
|---|---|
| dfcomember3 | ⊢ ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcomember2 38781 | . 2 ⊢ ( CoMembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 / ∼ 𝐴) = 𝐴)) | |
| 2 | dfcoeleqvrel 38728 | . . . 4 ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴) | |
| 3 | 2 | bicomi 224 | . . 3 ⊢ ( EqvRel ∼ 𝐴 ↔ CoElEqvRel 𝐴) |
| 4 | dmqscoelseq 38769 | . . 3 ⊢ ((dom ∼ 𝐴 / ∼ 𝐴) = 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴) | |
| 5 | 3, 4 | anbi12i 628 | . 2 ⊢ (( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 / ∼ 𝐴) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| 6 | 1, 5 | bitri 275 | 1 ⊢ ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∪ cuni 4860 dom cdm 5621 / cqs 8630 ∼ ccoels 38233 EqvRel weqvrel 38249 CoElEqvRel wcoeleqvrel 38251 CoMembEr wcomember 38260 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-eprel 5521 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ec 8633 df-qs 8637 df-coss 38523 df-coels 38524 df-refrel 38614 df-symrel 38646 df-trrel 38680 df-eqvrel 38691 df-coeleqvrel 38693 df-dmqs 38745 df-erALTV 38772 df-comember 38774 |
| This theorem is referenced by: mainer 38942 mpet 38947 |
| Copyright terms: Public domain | W3C validator |