Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcomember3 Structured version   Visualization version   GIF version

Theorem dfcomember3 38697
Description: Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.)
Assertion
Ref Expression
dfcomember3 ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))

Proof of Theorem dfcomember3
StepHypRef Expression
1 dfcomember2 38696 . 2 ( CoMembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 /𝐴) = 𝐴))
2 dfcoeleqvrel 38645 . . . 4 ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴)
32bicomi 224 . . 3 ( EqvRel ∼ 𝐴 ↔ CoElEqvRel 𝐴)
4 dmqscoelseq 38684 . . 3 ((dom ∼ 𝐴 /𝐴) = 𝐴 ↔ ( 𝐴 /𝐴) = 𝐴)
53, 4anbi12i 628 . 2 (( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 /𝐴) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
61, 5bitri 275 1 ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540   cuni 4888  dom cdm 5659   / cqs 8723  ccoels 38205   EqvRel weqvrel 38221   CoElEqvRel wcoeleqvrel 38223   CoMembEr wcomember 38232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-eprel 5558  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ec 8726  df-qs 8730  df-coss 38434  df-coels 38435  df-refrel 38535  df-symrel 38567  df-trrel 38597  df-eqvrel 38608  df-coeleqvrel 38610  df-dmqs 38662  df-erALTV 38687  df-comember 38689
This theorem is referenced by:  mainer  38857  mpet  38862
  Copyright terms: Public domain W3C validator