| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcomember | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| Ref | Expression |
|---|---|
| dfcomember | ⊢ ( CoMembEr 𝐴 ↔ ∼ 𝐴 ErALTV 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-comember 38665 | . 2 ⊢ ( CoMembEr 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) | |
| 2 | df-coels 38410 | . . 3 ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | |
| 3 | 2 | erALTVeq1i 38669 | . 2 ⊢ ( ∼ 𝐴 ErALTV 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ ( CoMembEr 𝐴 ↔ ∼ 𝐴 ErALTV 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 E cep 5540 ◡ccnv 5640 ↾ cres 5643 ≀ ccoss 38176 ∼ ccoels 38177 ErALTV werALTV 38202 CoMembEr wcomember 38204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ec 8676 df-qs 8680 df-coels 38410 df-refrel 38510 df-symrel 38542 df-trrel 38572 df-eqvrel 38583 df-dmqs 38637 df-erALTV 38663 df-comember 38665 |
| This theorem is referenced by: dfcomember2 38672 |
| Copyright terms: Public domain | W3C validator |