Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcomember Structured version   Visualization version   GIF version

Theorem dfcomember 38649
Description: Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 28-Nov-2022.)
Assertion
Ref Expression
dfcomember ( CoMembEr 𝐴 ↔ ∼ 𝐴 ErALTV 𝐴)

Proof of Theorem dfcomember
StepHypRef Expression
1 df-comember 38643 . 2 ( CoMembEr 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)
2 df-coels 38388 . . 3 𝐴 = ≀ ( E ↾ 𝐴)
32erALTVeq1i 38647 . 2 ( ∼ 𝐴 ErALTV 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)
41, 3bitr4i 278 1 ( CoMembEr 𝐴 ↔ ∼ 𝐴 ErALTV 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   E cep 5522  ccnv 5622  cres 5625  ccoss 38154  ccoels 38155   ErALTV werALTV 38180   CoMembEr wcomember 38182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ec 8634  df-qs 8638  df-coels 38388  df-refrel 38488  df-symrel 38520  df-trrel 38550  df-eqvrel 38561  df-dmqs 38615  df-erALTV 38641  df-comember 38643
This theorem is referenced by:  dfcomember2  38650
  Copyright terms: Public domain W3C validator