Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcomember Structured version   Visualization version   GIF version

Theorem dfcomember 38671
Description: Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 28-Nov-2022.)
Assertion
Ref Expression
dfcomember ( CoMembEr 𝐴 ↔ ∼ 𝐴 ErALTV 𝐴)

Proof of Theorem dfcomember
StepHypRef Expression
1 df-comember 38665 . 2 ( CoMembEr 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)
2 df-coels 38410 . . 3 𝐴 = ≀ ( E ↾ 𝐴)
32erALTVeq1i 38669 . 2 ( ∼ 𝐴 ErALTV 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)
41, 3bitr4i 278 1 ( CoMembEr 𝐴 ↔ ∼ 𝐴 ErALTV 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   E cep 5540  ccnv 5640  cres 5643  ccoss 38176  ccoels 38177   ErALTV werALTV 38202   CoMembEr wcomember 38204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ec 8676  df-qs 8680  df-coels 38410  df-refrel 38510  df-symrel 38542  df-trrel 38572  df-eqvrel 38583  df-dmqs 38637  df-erALTV 38663  df-comember 38665
This theorem is referenced by:  dfcomember2  38672
  Copyright terms: Public domain W3C validator