| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpet2 | Structured version Visualization version GIF version | ||
| Description: Member Partition-Equivalence Theorem in a shorter form. Together with mpet 38876 mpet3 38873, mostly in its conventional cpet 38875 and cpet2 38874 form, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38887 with general 𝑅). (Contributed by Peter Mazsa, 24-Sep-2021.) |
| Ref | Expression |
|---|---|
| mpet2 | ⊢ ((◡ E ↾ 𝐴) Part 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpet 38876 | . 2 ⊢ ( MembPart 𝐴 ↔ CoMembEr 𝐴) | |
| 2 | df-membpart 38805 | . 2 ⊢ ( MembPart 𝐴 ↔ (◡ E ↾ 𝐴) Part 𝐴) | |
| 3 | df-comember 38703 | . 2 ⊢ ( CoMembEr 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) | |
| 4 | 1, 2, 3 | 3bitr3i 301 | 1 ⊢ ((◡ E ↾ 𝐴) Part 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 E cep 5515 ◡ccnv 5615 ↾ cres 5618 ≀ ccoss 38214 ErALTV werALTV 38240 CoMembEr wcomember 38242 Part wpart 38253 MembPart wmembpart 38255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-eprel 5516 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ec 8624 df-qs 8628 df-coss 38447 df-coels 38448 df-refrel 38548 df-cnvrefrel 38563 df-symrel 38580 df-trrel 38610 df-eqvrel 38621 df-coeleqvrel 38623 df-dmqs 38675 df-erALTV 38701 df-comember 38703 df-funALTV 38719 df-disjALTV 38742 df-eldisj 38744 df-part 38803 df-membpart 38805 |
| This theorem is referenced by: mpets2 38878 |
| Copyright terms: Public domain | W3C validator |