![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpet2 | Structured version Visualization version GIF version |
Description: Member Partition-Equivalence Theorem in a shorter form. Together with mpet 38311 mpet3 38308, mostly in its conventional cpet 38310 and cpet2 38309 form, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38322 with general 𝑅). (Contributed by Peter Mazsa, 24-Sep-2021.) |
Ref | Expression |
---|---|
mpet2 | ⊢ ((◡ E ↾ 𝐴) Part 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpet 38311 | . 2 ⊢ ( MembPart 𝐴 ↔ CoMembEr 𝐴) | |
2 | df-membpart 38240 | . 2 ⊢ ( MembPart 𝐴 ↔ (◡ E ↾ 𝐴) Part 𝐴) | |
3 | df-comember 38138 | . 2 ⊢ ( CoMembEr 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) | |
4 | 1, 2, 3 | 3bitr3i 301 | 1 ⊢ ((◡ E ↾ 𝐴) Part 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 E cep 5581 ◡ccnv 5677 ↾ cres 5680 ≀ ccoss 37648 ErALTV werALTV 37674 CoMembEr wcomember 37676 Part wpart 37687 MembPart wmembpart 37689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5576 df-eprel 5582 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ec 8726 df-qs 8730 df-coss 37883 df-coels 37884 df-refrel 37984 df-cnvrefrel 37999 df-symrel 38016 df-trrel 38046 df-eqvrel 38057 df-coeleqvrel 38059 df-dmqs 38111 df-erALTV 38136 df-comember 38138 df-funALTV 38154 df-disjALTV 38177 df-eldisj 38179 df-part 38238 df-membpart 38240 |
This theorem is referenced by: mpets2 38313 |
Copyright terms: Public domain | W3C validator |