![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpet2 | Structured version Visualization version GIF version |
Description: Member Partition-Equivalence Theorem in a shorter form. Together with mpet 38212 mpet3 38209, mostly in its conventional cpet 38211 and cpet2 38210 form, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38223 with general 𝑅). (Contributed by Peter Mazsa, 24-Sep-2021.) |
Ref | Expression |
---|---|
mpet2 | ⊢ ((◡ E ↾ 𝐴) Part 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpet 38212 | . 2 ⊢ ( MembPart 𝐴 ↔ CoMembEr 𝐴) | |
2 | df-membpart 38141 | . 2 ⊢ ( MembPart 𝐴 ↔ (◡ E ↾ 𝐴) Part 𝐴) | |
3 | df-comember 38039 | . 2 ⊢ ( CoMembEr 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) | |
4 | 1, 2, 3 | 3bitr3i 301 | 1 ⊢ ((◡ E ↾ 𝐴) Part 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 E cep 5570 ◡ccnv 5666 ↾ cres 5669 ≀ ccoss 37546 ErALTV werALTV 37572 CoMembEr wcomember 37574 Part wpart 37585 MembPart wmembpart 37587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-id 5565 df-eprel 5571 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ec 8702 df-qs 8706 df-coss 37784 df-coels 37785 df-refrel 37885 df-cnvrefrel 37900 df-symrel 37917 df-trrel 37947 df-eqvrel 37958 df-coeleqvrel 37960 df-dmqs 38012 df-erALTV 38037 df-comember 38039 df-funALTV 38055 df-disjALTV 38078 df-eldisj 38080 df-part 38139 df-membpart 38141 |
This theorem is referenced by: mpets2 38214 |
Copyright terms: Public domain | W3C validator |