| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpet2 | Structured version Visualization version GIF version | ||
| Description: Member Partition-Equivalence Theorem in a shorter form. Together with mpet 38826 mpet3 38823, mostly in its conventional cpet 38825 and cpet2 38824 form, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38837 with general 𝑅). (Contributed by Peter Mazsa, 24-Sep-2021.) |
| Ref | Expression |
|---|---|
| mpet2 | ⊢ ((◡ E ↾ 𝐴) Part 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpet 38826 | . 2 ⊢ ( MembPart 𝐴 ↔ CoMembEr 𝐴) | |
| 2 | df-membpart 38755 | . 2 ⊢ ( MembPart 𝐴 ↔ (◡ E ↾ 𝐴) Part 𝐴) | |
| 3 | df-comember 38653 | . 2 ⊢ ( CoMembEr 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) | |
| 4 | 1, 2, 3 | 3bitr3i 301 | 1 ⊢ ((◡ E ↾ 𝐴) Part 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 E cep 5539 ◡ccnv 5639 ↾ cres 5642 ≀ ccoss 38164 ErALTV werALTV 38190 CoMembEr wcomember 38192 Part wpart 38203 MembPart wmembpart 38205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-eprel 5540 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-ec 8675 df-qs 8679 df-coss 38397 df-coels 38398 df-refrel 38498 df-cnvrefrel 38513 df-symrel 38530 df-trrel 38560 df-eqvrel 38571 df-coeleqvrel 38573 df-dmqs 38625 df-erALTV 38651 df-comember 38653 df-funALTV 38669 df-disjALTV 38692 df-eldisj 38694 df-part 38753 df-membpart 38755 |
| This theorem is referenced by: mpets2 38828 |
| Copyright terms: Public domain | W3C validator |