Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpet2 Structured version   Visualization version   GIF version

Theorem mpet2 38817
Description: Member Partition-Equivalence Theorem in a shorter form. Together with mpet 38816 mpet3 38813, mostly in its conventional cpet 38815 and cpet2 38814 form, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38827 with general 𝑅). (Contributed by Peter Mazsa, 24-Sep-2021.)
Assertion
Ref Expression
mpet2 (( E ↾ 𝐴) Part 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)

Proof of Theorem mpet2
StepHypRef Expression
1 mpet 38816 . 2 ( MembPart 𝐴 ↔ CoMembEr 𝐴)
2 df-membpart 38745 . 2 ( MembPart 𝐴 ↔ ( E ↾ 𝐴) Part 𝐴)
3 df-comember 38643 . 2 ( CoMembEr 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)
41, 2, 33bitr3i 301 1 (( E ↾ 𝐴) Part 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   E cep 5522  ccnv 5622  cres 5625  ccoss 38154   ErALTV werALTV 38180   CoMembEr wcomember 38182   Part wpart 38193   MembPart wmembpart 38195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-eprel 5523  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ec 8634  df-qs 8638  df-coss 38387  df-coels 38388  df-refrel 38488  df-cnvrefrel 38503  df-symrel 38520  df-trrel 38550  df-eqvrel 38561  df-coeleqvrel 38563  df-dmqs 38615  df-erALTV 38641  df-comember 38643  df-funALTV 38659  df-disjALTV 38682  df-eldisj 38684  df-part 38743  df-membpart 38745
This theorem is referenced by:  mpets2  38818
  Copyright terms: Public domain W3C validator