Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpet2 Structured version   Visualization version   GIF version

Theorem mpet2 38783
Description: Member Partition-Equivalence Theorem in a shorter form. Together with mpet 38782 mpet3 38779, mostly in its conventional cpet 38781 and cpet2 38780 form, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38793 with general 𝑅). (Contributed by Peter Mazsa, 24-Sep-2021.)
Assertion
Ref Expression
mpet2 (( E ↾ 𝐴) Part 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)

Proof of Theorem mpet2
StepHypRef Expression
1 mpet 38782 . 2 ( MembPart 𝐴 ↔ CoMembEr 𝐴)
2 df-membpart 38711 . 2 ( MembPart 𝐴 ↔ ( E ↾ 𝐴) Part 𝐴)
3 df-comember 38609 . 2 ( CoMembEr 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)
41, 2, 33bitr3i 301 1 (( E ↾ 𝐴) Part 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   E cep 5581  ccnv 5682  cres 5685  ccoss 38122   ErALTV werALTV 38148   CoMembEr wcomember 38150   Part wpart 38161   MembPart wmembpart 38163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3376  df-rab 3433  df-v 3479  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-br 5150  df-opab 5212  df-id 5576  df-eprel 5582  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-ec 8740  df-qs 8744  df-coss 38354  df-coels 38355  df-refrel 38455  df-cnvrefrel 38470  df-symrel 38487  df-trrel 38517  df-eqvrel 38528  df-coeleqvrel 38530  df-dmqs 38582  df-erALTV 38607  df-comember 38609  df-funALTV 38625  df-disjALTV 38648  df-eldisj 38650  df-part 38709  df-membpart 38711
This theorem is referenced by:  mpets2  38784
  Copyright terms: Public domain W3C validator