Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpet2 Structured version   Visualization version   GIF version

Theorem mpet2 38958
Description: Member Partition-Equivalence Theorem in a shorter form. Together with mpet 38957 mpet3 38954, mostly in its conventional cpet 38956 and cpet2 38955 form, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38968 with general 𝑅). (Contributed by Peter Mazsa, 24-Sep-2021.)
Assertion
Ref Expression
mpet2 (( E ↾ 𝐴) Part 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)

Proof of Theorem mpet2
StepHypRef Expression
1 mpet 38957 . 2 ( MembPart 𝐴 ↔ CoMembEr 𝐴)
2 df-membpart 38886 . 2 ( MembPart 𝐴 ↔ ( E ↾ 𝐴) Part 𝐴)
3 df-comember 38784 . 2 ( CoMembEr 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)
41, 2, 33bitr3i 301 1 (( E ↾ 𝐴) Part 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   E cep 5518  ccnv 5618  cres 5621  ccoss 38242   ErALTV werALTV 38268   CoMembEr wcomember 38270   Part wpart 38281   MembPart wmembpart 38283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8630  df-qs 8634  df-coss 38533  df-coels 38534  df-refrel 38624  df-cnvrefrel 38639  df-symrel 38656  df-trrel 38690  df-eqvrel 38701  df-coeleqvrel 38703  df-dmqs 38755  df-erALTV 38782  df-comember 38784  df-funALTV 38800  df-disjALTV 38823  df-eldisj 38825  df-part 38884  df-membpart 38886
This theorem is referenced by:  mpets2  38959
  Copyright terms: Public domain W3C validator