Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvepresdmqs Structured version   Visualization version   GIF version

Theorem cnvepresdmqs 38652
Description: The domain quotient predicate for the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021.)
Assertion
Ref Expression
cnvepresdmqs (( E ↾ 𝐴) DomainQs 𝐴 ↔ ¬ ∅ ∈ 𝐴)

Proof of Theorem cnvepresdmqs
StepHypRef Expression
1 df-dmqs 38637 . 2 (( E ↾ 𝐴) DomainQs 𝐴 ↔ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴)
2 n0el3 38650 . 2 (¬ ∅ ∈ 𝐴 ↔ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴)
31, 2bitr4i 278 1 (( E ↾ 𝐴) DomainQs 𝐴 ↔ ¬ ∅ ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  c0 4299   E cep 5540  ccnv 5640  dom cdm 5641  cres 5643   / cqs 8673   DomainQs wdmqs 38200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-eprel 5541  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ec 8676  df-qs 8680  df-dmqs 38637
This theorem is referenced by:  dfmembpart2  38769
  Copyright terms: Public domain W3C validator