Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brdmqssqs Structured version   Visualization version   GIF version

Theorem brdmqssqs 36861
Description: If 𝐴 and 𝑅 are sets, the domain quotient binary relation and the domain quotient predicate are the same. (Contributed by Peter Mazsa, 14-Aug-2021.)
Assertion
Ref Expression
brdmqssqs ((𝐴𝑉𝑅𝑊) → (𝑅 DomainQss 𝐴𝑅 DomainQs 𝐴))

Proof of Theorem brdmqssqs
StepHypRef Expression
1 brdmqss 36860 . 2 ((𝐴𝑉𝑅𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴))
2 df-dmqs 36853 . 2 (𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)
31, 2bitr4di 289 1 ((𝐴𝑉𝑅𝑊) → (𝑅 DomainQss 𝐴𝑅 DomainQs 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104   class class class wbr 5081  dom cdm 5600   / cqs 8528   DomainQss cdmqss 36404   DomainQs wdmqs 36405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-cnv 5608  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ec 8531  df-qs 8535  df-dmqss 36852  df-dmqs 36853
This theorem is referenced by:  brerser  36891  brpartspart  36987
  Copyright terms: Public domain W3C validator