Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmqseq Structured version   Visualization version   GIF version

Theorem dmqseq 36051
 Description: Equality theorem for domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019.)
Assertion
Ref Expression
dmqseq (𝑅 = 𝑆 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆))

Proof of Theorem dmqseq
StepHypRef Expression
1 dmeq 5736 . 2 (𝑅 = 𝑆 → dom 𝑅 = dom 𝑆)
2 qseq12 8332 . 2 ((dom 𝑅 = dom 𝑆𝑅 = 𝑆) → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆))
31, 2mpancom 687 1 (𝑅 = 𝑆 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538  dom cdm 5519   / cqs 8273 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-rex 3112  df-rab 3115  df-v 3443  df-un 3886  df-in 3888  df-ss 3898  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-cnv 5527  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ec 8276  df-qs 8280 This theorem is referenced by:  dmqseqi  36052  dmqseqd  36053  dmqseqeq1  36054  brdmqss  36057
 Copyright terms: Public domain W3C validator