Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tngdsOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of tngds 23692 as of 29-Oct-2024. The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
tngbas.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
tngds.2 | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
tngdsOLD | ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) = (dist‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dsid 16992 | . . . 4 ⊢ dist = Slot (dist‘ndx) | |
2 | 9re 11977 | . . . . . 6 ⊢ 9 ∈ ℝ | |
3 | 1nn 11889 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
4 | 2nn0 12155 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
5 | 9nn0 12162 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
6 | 9lt10 12472 | . . . . . . 7 ⊢ 9 < ;10 | |
7 | 3, 4, 5, 6 | declti 12379 | . . . . . 6 ⊢ 9 < ;12 |
8 | 2, 7 | gtneii 10992 | . . . . 5 ⊢ ;12 ≠ 9 |
9 | dsndx 16991 | . . . . . 6 ⊢ (dist‘ndx) = ;12 | |
10 | tsetndx 16962 | . . . . . 6 ⊢ (TopSet‘ndx) = 9 | |
11 | 9, 10 | neeq12i 3010 | . . . . 5 ⊢ ((dist‘ndx) ≠ (TopSet‘ndx) ↔ ;12 ≠ 9) |
12 | 8, 11 | mpbir 234 | . . . 4 ⊢ (dist‘ndx) ≠ (TopSet‘ndx) |
13 | 1, 12 | setsnid 16813 | . . 3 ⊢ (dist‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉)) = (dist‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ − ))〉)) |
14 | tngds.2 | . . . . . 6 ⊢ − = (-g‘𝐺) | |
15 | 14 | fvexi 6767 | . . . . 5 ⊢ − ∈ V |
16 | coexg 7747 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ − ∈ V) → (𝑁 ∘ − ) ∈ V) | |
17 | 15, 16 | mpan2 691 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) ∈ V) |
18 | 1 | setsid 16812 | . . . 4 ⊢ ((𝐺 ∈ V ∧ (𝑁 ∘ − ) ∈ V) → (𝑁 ∘ − ) = (dist‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉))) |
19 | 17, 18 | sylan2 596 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝑁 ∘ − ) = (dist‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉))) |
20 | tngbas.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
21 | eqid 2739 | . . . . 5 ⊢ (𝑁 ∘ − ) = (𝑁 ∘ − ) | |
22 | eqid 2739 | . . . . 5 ⊢ (MetOpen‘(𝑁 ∘ − )) = (MetOpen‘(𝑁 ∘ − )) | |
23 | 20, 14, 21, 22 | tngval 23676 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ − ))〉)) |
24 | 23 | fveq2d 6757 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (dist‘𝑇) = (dist‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ − ))〉))) |
25 | 13, 19, 24 | 3eqtr4a 2806 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝑁 ∘ − ) = (dist‘𝑇)) |
26 | co02 6152 | . . . . 5 ⊢ (𝑁 ∘ ∅) = ∅ | |
27 | df-ds 16885 | . . . . . 6 ⊢ dist = Slot ;12 | |
28 | 27 | str0 16793 | . . . . 5 ⊢ ∅ = (dist‘∅) |
29 | 26, 28 | eqtri 2767 | . . . 4 ⊢ (𝑁 ∘ ∅) = (dist‘∅) |
30 | fvprc 6745 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (-g‘𝐺) = ∅) | |
31 | 14, 30 | syl5eq 2792 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → − = ∅) |
32 | 31 | coeq2d 5759 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝑁 ∘ − ) = (𝑁 ∘ ∅)) |
33 | reldmtng 23675 | . . . . . . 7 ⊢ Rel dom toNrmGrp | |
34 | 33 | ovprc1 7291 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (𝐺 toNrmGrp 𝑁) = ∅) |
35 | 20, 34 | syl5eq 2792 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → 𝑇 = ∅) |
36 | 35 | fveq2d 6757 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (dist‘𝑇) = (dist‘∅)) |
37 | 29, 32, 36 | 3eqtr4a 2806 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝑁 ∘ − ) = (dist‘𝑇)) |
38 | 37 | adantr 484 | . 2 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝑁 ∘ − ) = (dist‘𝑇)) |
39 | 25, 38 | pm2.61ian 812 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) = (dist‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 Vcvv 3423 ∅c0 4254 〈cop 4564 ∘ ccom 5583 ‘cfv 6415 (class class class)co 7252 1c1 10778 2c2 11933 9c9 11940 ;cdc 12341 sSet csts 16767 ndxcnx 16797 TopSetcts 16869 distcds 16872 -gcsg 18469 MetOpencmopn 20475 toNrmGrp ctng 23615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 df-8 11947 df-9 11948 df-n0 12139 df-z 12225 df-dec 12342 df-sets 16768 df-slot 16786 df-ndx 16798 df-tset 16882 df-ds 16885 df-tng 23621 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |