![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tngdsOLD | Structured version Visualization version GIF version |
Description: Obsolete version of tngds 24684 as of 29-Oct-2024. The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
tngbas.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
tngds.2 | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
tngdsOLD | ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) = (dist‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dsid 17432 | . . . 4 ⊢ dist = Slot (dist‘ndx) | |
2 | 9re 12363 | . . . . . 6 ⊢ 9 ∈ ℝ | |
3 | 1nn 12275 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
4 | 2nn0 12541 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
5 | 9nn0 12548 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
6 | 9lt10 12862 | . . . . . . 7 ⊢ 9 < ;10 | |
7 | 3, 4, 5, 6 | declti 12769 | . . . . . 6 ⊢ 9 < ;12 |
8 | 2, 7 | gtneii 11371 | . . . . 5 ⊢ ;12 ≠ 9 |
9 | dsndx 17431 | . . . . . 6 ⊢ (dist‘ndx) = ;12 | |
10 | tsetndx 17398 | . . . . . 6 ⊢ (TopSet‘ndx) = 9 | |
11 | 9, 10 | neeq12i 3005 | . . . . 5 ⊢ ((dist‘ndx) ≠ (TopSet‘ndx) ↔ ;12 ≠ 9) |
12 | 8, 11 | mpbir 231 | . . . 4 ⊢ (dist‘ndx) ≠ (TopSet‘ndx) |
13 | 1, 12 | setsnid 17243 | . . 3 ⊢ (dist‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉)) = (dist‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ − ))〉)) |
14 | tngds.2 | . . . . . 6 ⊢ − = (-g‘𝐺) | |
15 | 14 | fvexi 6921 | . . . . 5 ⊢ − ∈ V |
16 | coexg 7952 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ − ∈ V) → (𝑁 ∘ − ) ∈ V) | |
17 | 15, 16 | mpan2 691 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) ∈ V) |
18 | 1 | setsid 17242 | . . . 4 ⊢ ((𝐺 ∈ V ∧ (𝑁 ∘ − ) ∈ V) → (𝑁 ∘ − ) = (dist‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉))) |
19 | 17, 18 | sylan2 593 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝑁 ∘ − ) = (dist‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉))) |
20 | tngbas.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
21 | eqid 2735 | . . . . 5 ⊢ (𝑁 ∘ − ) = (𝑁 ∘ − ) | |
22 | eqid 2735 | . . . . 5 ⊢ (MetOpen‘(𝑁 ∘ − )) = (MetOpen‘(𝑁 ∘ − )) | |
23 | 20, 14, 21, 22 | tngval 24668 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ − ))〉)) |
24 | 23 | fveq2d 6911 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (dist‘𝑇) = (dist‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ − ))〉))) |
25 | 13, 19, 24 | 3eqtr4a 2801 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝑁 ∘ − ) = (dist‘𝑇)) |
26 | co02 6282 | . . . . 5 ⊢ (𝑁 ∘ ∅) = ∅ | |
27 | df-ds 17320 | . . . . . 6 ⊢ dist = Slot ;12 | |
28 | 27 | str0 17223 | . . . . 5 ⊢ ∅ = (dist‘∅) |
29 | 26, 28 | eqtri 2763 | . . . 4 ⊢ (𝑁 ∘ ∅) = (dist‘∅) |
30 | fvprc 6899 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (-g‘𝐺) = ∅) | |
31 | 14, 30 | eqtrid 2787 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → − = ∅) |
32 | 31 | coeq2d 5876 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝑁 ∘ − ) = (𝑁 ∘ ∅)) |
33 | reldmtng 24667 | . . . . . . 7 ⊢ Rel dom toNrmGrp | |
34 | 33 | ovprc1 7470 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (𝐺 toNrmGrp 𝑁) = ∅) |
35 | 20, 34 | eqtrid 2787 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → 𝑇 = ∅) |
36 | 35 | fveq2d 6911 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (dist‘𝑇) = (dist‘∅)) |
37 | 29, 32, 36 | 3eqtr4a 2801 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝑁 ∘ − ) = (dist‘𝑇)) |
38 | 37 | adantr 480 | . 2 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝑁 ∘ − ) = (dist‘𝑇)) |
39 | 25, 38 | pm2.61ian 812 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) = (dist‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 ∅c0 4339 〈cop 4637 ∘ ccom 5693 ‘cfv 6563 (class class class)co 7431 1c1 11154 2c2 12319 9c9 12326 ;cdc 12731 sSet csts 17197 ndxcnx 17227 TopSetcts 17304 distcds 17307 -gcsg 18966 MetOpencmopn 21372 toNrmGrp ctng 24607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-sets 17198 df-slot 17216 df-ndx 17228 df-tset 17317 df-ds 17320 df-tng 24613 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |