![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tngdsOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of tngds 24164 as of 29-Oct-2024. The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
tngbas.t | β’ π = (πΊ toNrmGrp π) |
tngds.2 | β’ β = (-gβπΊ) |
Ref | Expression |
---|---|
tngdsOLD | β’ (π β π β (π β β ) = (distβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dsid 17331 | . . . 4 β’ dist = Slot (distβndx) | |
2 | 9re 12311 | . . . . . 6 β’ 9 β β | |
3 | 1nn 12223 | . . . . . . 7 β’ 1 β β | |
4 | 2nn0 12489 | . . . . . . 7 β’ 2 β β0 | |
5 | 9nn0 12496 | . . . . . . 7 β’ 9 β β0 | |
6 | 9lt10 12808 | . . . . . . 7 β’ 9 < ;10 | |
7 | 3, 4, 5, 6 | declti 12715 | . . . . . 6 β’ 9 < ;12 |
8 | 2, 7 | gtneii 11326 | . . . . 5 β’ ;12 β 9 |
9 | dsndx 17330 | . . . . . 6 β’ (distβndx) = ;12 | |
10 | tsetndx 17297 | . . . . . 6 β’ (TopSetβndx) = 9 | |
11 | 9, 10 | neeq12i 3008 | . . . . 5 β’ ((distβndx) β (TopSetβndx) β ;12 β 9) |
12 | 8, 11 | mpbir 230 | . . . 4 β’ (distβndx) β (TopSetβndx) |
13 | 1, 12 | setsnid 17142 | . . 3 β’ (distβ(πΊ sSet β¨(distβndx), (π β β )β©)) = (distβ((πΊ sSet β¨(distβndx), (π β β )β©) sSet β¨(TopSetβndx), (MetOpenβ(π β β ))β©)) |
14 | tngds.2 | . . . . . 6 β’ β = (-gβπΊ) | |
15 | 14 | fvexi 6906 | . . . . 5 β’ β β V |
16 | coexg 7920 | . . . . 5 β’ ((π β π β§ β β V) β (π β β ) β V) | |
17 | 15, 16 | mpan2 690 | . . . 4 β’ (π β π β (π β β ) β V) |
18 | 1 | setsid 17141 | . . . 4 β’ ((πΊ β V β§ (π β β ) β V) β (π β β ) = (distβ(πΊ sSet β¨(distβndx), (π β β )β©))) |
19 | 17, 18 | sylan2 594 | . . 3 β’ ((πΊ β V β§ π β π) β (π β β ) = (distβ(πΊ sSet β¨(distβndx), (π β β )β©))) |
20 | tngbas.t | . . . . 5 β’ π = (πΊ toNrmGrp π) | |
21 | eqid 2733 | . . . . 5 β’ (π β β ) = (π β β ) | |
22 | eqid 2733 | . . . . 5 β’ (MetOpenβ(π β β )) = (MetOpenβ(π β β )) | |
23 | 20, 14, 21, 22 | tngval 24148 | . . . 4 β’ ((πΊ β V β§ π β π) β π = ((πΊ sSet β¨(distβndx), (π β β )β©) sSet β¨(TopSetβndx), (MetOpenβ(π β β ))β©)) |
24 | 23 | fveq2d 6896 | . . 3 β’ ((πΊ β V β§ π β π) β (distβπ) = (distβ((πΊ sSet β¨(distβndx), (π β β )β©) sSet β¨(TopSetβndx), (MetOpenβ(π β β ))β©))) |
25 | 13, 19, 24 | 3eqtr4a 2799 | . 2 β’ ((πΊ β V β§ π β π) β (π β β ) = (distβπ)) |
26 | co02 6260 | . . . . 5 β’ (π β β ) = β | |
27 | df-ds 17219 | . . . . . 6 β’ dist = Slot ;12 | |
28 | 27 | str0 17122 | . . . . 5 β’ β = (distββ ) |
29 | 26, 28 | eqtri 2761 | . . . 4 β’ (π β β ) = (distββ ) |
30 | fvprc 6884 | . . . . . 6 β’ (Β¬ πΊ β V β (-gβπΊ) = β ) | |
31 | 14, 30 | eqtrid 2785 | . . . . 5 β’ (Β¬ πΊ β V β β = β ) |
32 | 31 | coeq2d 5863 | . . . 4 β’ (Β¬ πΊ β V β (π β β ) = (π β β )) |
33 | reldmtng 24147 | . . . . . . 7 β’ Rel dom toNrmGrp | |
34 | 33 | ovprc1 7448 | . . . . . 6 β’ (Β¬ πΊ β V β (πΊ toNrmGrp π) = β ) |
35 | 20, 34 | eqtrid 2785 | . . . . 5 β’ (Β¬ πΊ β V β π = β ) |
36 | 35 | fveq2d 6896 | . . . 4 β’ (Β¬ πΊ β V β (distβπ) = (distββ )) |
37 | 29, 32, 36 | 3eqtr4a 2799 | . . 3 β’ (Β¬ πΊ β V β (π β β ) = (distβπ)) |
38 | 37 | adantr 482 | . 2 β’ ((Β¬ πΊ β V β§ π β π) β (π β β ) = (distβπ)) |
39 | 25, 38 | pm2.61ian 811 | 1 β’ (π β π β (π β β ) = (distβπ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wne 2941 Vcvv 3475 β c0 4323 β¨cop 4635 β ccom 5681 βcfv 6544 (class class class)co 7409 1c1 11111 2c2 12267 9c9 12274 ;cdc 12677 sSet csts 17096 ndxcnx 17126 TopSetcts 17203 distcds 17206 -gcsg 18821 MetOpencmopn 20934 toNrmGrp ctng 24087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-sets 17097 df-slot 17115 df-ndx 17127 df-tset 17216 df-ds 17219 df-tng 24093 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |