MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsid Structured version   Visualization version   GIF version

Theorem dsid 17092
Description: Utility theorem: index-independent form of df-ds 16980. (Contributed by Mario Carneiro, 23-Dec-2013.)
Assertion
Ref Expression
dsid dist = Slot (dist‘ndx)

Proof of Theorem dsid
StepHypRef Expression
1 df-ds 16980 . 2 dist = Slot 12
2 1nn0 12247 . . 3 1 ∈ ℕ0
3 2nn 12044 . . 3 2 ∈ ℕ
42, 3decnncl 12454 . 2 12 ∈ ℕ
51, 4ndxid 16894 1 dist = Slot (dist‘ndx)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  cfv 6431  1c1 10871  2c2 12026  cdc 12434  Slot cslot 16878  ndxcnx 16890  distcds 16967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-ov 7272  df-om 7705  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-er 8479  df-en 8715  df-dom 8716  df-sdom 8717  df-pnf 11010  df-mnf 11011  df-ltxr 11013  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-dec 12435  df-slot 16879  df-ndx 16891  df-ds 16980
This theorem is referenced by:  odrngds  17115  ressds  17116  prdsds  17171  imasds  17220  mgpds  19729  srads  20451  cnfldds  20603  setsmsds  23626  setsmsdsOLD  23627  tmslem  23633  tngds  23807  tngdsOLD  23808  trkgdist  26803  ttgds  27243  ecgrtg  27347  zlmds  31906  zlmdsOLD  31907
  Copyright terms: Public domain W3C validator