| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dsndx | Structured version Visualization version GIF version | ||
| Description: Index value of the df-ds 17193 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dsndx | ⊢ (dist‘ndx) = ;12 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ds 17193 | . 2 ⊢ dist = Slot ;12 | |
| 2 | 1nn0 12407 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 3 | 2nn 12208 | . . 3 ⊢ 2 ∈ ℕ | |
| 4 | 2, 3 | decnncl 12618 | . 2 ⊢ ;12 ∈ ℕ |
| 5 | 1, 4 | ndxarg 17117 | 1 ⊢ (dist‘ndx) = ;12 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ‘cfv 6489 1c1 11017 2c2 12190 ;cdc 12598 ndxcnx 17114 distcds 17180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-ltxr 11161 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-dec 12599 df-slot 17103 df-ndx 17115 df-ds 17193 |
| This theorem is referenced by: dsndxnn 17301 basendxltdsndx 17302 dsndxnplusgndx 17304 dsndxnmulrndx 17305 slotsdnscsi 17306 dsndxntsetndx 17307 slotsdifdsndx 17308 slotsdifunifndx 17315 odrngstr 17317 imasvalstr 17365 cnfldstr 21303 cnfldstrOLD 21318 slotsinbpsd 28429 slotslnbpsd 28430 trkgstr 28432 eengstr 28969 |
| Copyright terms: Public domain | W3C validator |