Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tmslemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of tmslem 23742 as of 28-Oct-2024. Lemma for tmsbas 23744, tmsds 23745, and tmstopn 23746. (Contributed by Mario Carneiro, 2-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
tmsval.m | ⊢ 𝑀 = {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} |
tmsval.k | ⊢ 𝐾 = (toMetSp‘𝐷) |
Ref | Expression |
---|---|
tmslemOLD | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6866 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) | |
2 | tmsval.m | . . . . 5 ⊢ 𝑀 = {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} | |
3 | df-ds 17081 | . . . . 5 ⊢ dist = Slot ;12 | |
4 | 1nn 12089 | . . . . . 6 ⊢ 1 ∈ ℕ | |
5 | 2nn0 12355 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
6 | 1nn0 12354 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
7 | 1lt10 12681 | . . . . . 6 ⊢ 1 < ;10 | |
8 | 4, 5, 6, 7 | declti 12580 | . . . . 5 ⊢ 1 < ;12 |
9 | 2nn 12151 | . . . . . 6 ⊢ 2 ∈ ℕ | |
10 | 6, 9 | decnncl 12562 | . . . . 5 ⊢ ;12 ∈ ℕ |
11 | 2, 3, 8, 10 | 2strbas 17032 | . . . 4 ⊢ (𝑋 ∈ dom ∞Met → 𝑋 = (Base‘𝑀)) |
12 | 1, 11 | syl 17 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝑀)) |
13 | xmetf 23587 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
14 | ffn 6655 | . . . . 5 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → 𝐷 Fn (𝑋 × 𝑋)) | |
15 | fnresdm 6607 | . . . . 5 ⊢ (𝐷 Fn (𝑋 × 𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷) | |
16 | 13, 14, 15 | 3syl 18 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷) |
17 | 2, 3, 8, 10 | 2strop 17033 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝑀)) |
18 | 17 | reseq1d 5926 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
19 | 16, 18 | eqtr3d 2779 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
20 | tmsval.k | . . . 4 ⊢ 𝐾 = (toMetSp‘𝐷) | |
21 | 2, 20 | tmsval 23741 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
22 | 12, 19, 21 | setsmsbas 23733 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝐾)) |
23 | 12, 19, 21 | setsmsds 23735 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (dist‘𝑀) = (dist‘𝐾)) |
24 | 17, 23 | eqtrd 2777 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝐾)) |
25 | prex 5381 | . . . . 5 ⊢ {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} ∈ V | |
26 | 2, 25 | eqeltri 2834 | . . . 4 ⊢ 𝑀 ∈ V |
27 | 26 | a1i 11 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑀 ∈ V) |
28 | 12, 19, 21, 27 | setsmstopn 23738 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
29 | 22, 24, 28 | 3jca 1128 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3442 {cpr 4579 〈cop 4583 × cxp 5622 dom cdm 5624 ↾ cres 5626 Fn wfn 6478 ⟶wf 6479 ‘cfv 6483 1c1 10977 ℝ*cxr 11113 2c2 12133 ;cdc 12542 ndxcnx 16991 Basecbs 17009 distcds 17068 TopOpenctopn 17229 ∞Metcxmet 20687 MetOpencmopn 20692 toMetSpctms 23577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-er 8573 df-map 8692 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-sup 9303 df-inf 9304 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-n0 12339 df-z 12425 df-dec 12543 df-uz 12688 df-q 12794 df-rp 12836 df-xneg 12953 df-xadd 12954 df-xmul 12955 df-fz 13345 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-tset 17078 df-ds 17081 df-rest 17230 df-topn 17231 df-topgen 17251 df-psmet 20694 df-xmet 20695 df-bl 20697 df-mopn 20698 df-top 22148 df-topon 22165 df-bases 22201 df-tms 23580 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |