| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tmslemOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of tmslem 24494 as of 28-Oct-2024. Lemma for tmsbas 24496, tmsds 24497, and tmstopn 24498. (Contributed by Mario Carneiro, 2-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| tmsval.m | ⊢ 𝑀 = {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} |
| tmsval.k | ⊢ 𝐾 = (toMetSp‘𝐷) |
| Ref | Expression |
|---|---|
| tmslemOLD | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6943 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) | |
| 2 | tmsval.m | . . . . 5 ⊢ 𝑀 = {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} | |
| 3 | df-ds 17319 | . . . . 5 ⊢ dist = Slot ;12 | |
| 4 | 1nn 12277 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 5 | 2nn0 12543 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 6 | 1nn0 12542 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 7 | 1lt10 12872 | . . . . . 6 ⊢ 1 < ;10 | |
| 8 | 4, 5, 6, 7 | declti 12771 | . . . . 5 ⊢ 1 < ;12 |
| 9 | 2nn 12339 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 10 | 6, 9 | decnncl 12753 | . . . . 5 ⊢ ;12 ∈ ℕ |
| 11 | 2, 3, 8, 10 | 2strbas 17268 | . . . 4 ⊢ (𝑋 ∈ dom ∞Met → 𝑋 = (Base‘𝑀)) |
| 12 | 1, 11 | syl 17 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝑀)) |
| 13 | xmetf 24339 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
| 14 | ffn 6736 | . . . . 5 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → 𝐷 Fn (𝑋 × 𝑋)) | |
| 15 | fnresdm 6687 | . . . . 5 ⊢ (𝐷 Fn (𝑋 × 𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷) | |
| 16 | 13, 14, 15 | 3syl 18 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷) |
| 17 | 2, 3, 8, 10 | 2strop 17269 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝑀)) |
| 18 | 17 | reseq1d 5996 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
| 19 | 16, 18 | eqtr3d 2779 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
| 20 | tmsval.k | . . . 4 ⊢ 𝐾 = (toMetSp‘𝐷) | |
| 21 | 2, 20 | tmsval 24493 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
| 22 | 12, 19, 21 | setsmsbas 24485 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝐾)) |
| 23 | 12, 19, 21 | setsmsds 24487 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (dist‘𝑀) = (dist‘𝐾)) |
| 24 | 17, 23 | eqtrd 2777 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝐾)) |
| 25 | prex 5437 | . . . . 5 ⊢ {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} ∈ V | |
| 26 | 2, 25 | eqeltri 2837 | . . . 4 ⊢ 𝑀 ∈ V |
| 27 | 26 | a1i 11 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑀 ∈ V) |
| 28 | 12, 19, 21, 27 | setsmstopn 24490 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
| 29 | 22, 24, 28 | 3jca 1129 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 Vcvv 3480 {cpr 4628 〈cop 4632 × cxp 5683 dom cdm 5685 ↾ cres 5687 Fn wfn 6556 ⟶wf 6557 ‘cfv 6561 1c1 11156 ℝ*cxr 11294 2c2 12321 ;cdc 12733 ndxcnx 17230 Basecbs 17247 distcds 17306 TopOpenctopn 17466 ∞Metcxmet 21349 MetOpencmopn 21354 toMetSpctms 24329 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-tset 17316 df-ds 17319 df-rest 17467 df-topn 17468 df-topgen 17488 df-psmet 21356 df-xmet 21357 df-bl 21359 df-mopn 21360 df-top 22900 df-topon 22917 df-bases 22953 df-tms 24332 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |