MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmslemOLD Structured version   Visualization version   GIF version

Theorem tmslemOLD 24346
Description: Obsolete version of tmslem 24345 as of 28-Oct-2024. Lemma for tmsbas 24347, tmsds 24348, and tmstopn 24349. (Contributed by Mario Carneiro, 2-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
tmsval.m 𝑀 = {⟨(Baseβ€˜ndx), π‘‹βŸ©, ⟨(distβ€˜ndx), 𝐷⟩}
tmsval.k 𝐾 = (toMetSpβ€˜π·)
Assertion
Ref Expression
tmslemOLD (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝑋 = (Baseβ€˜πΎ) ∧ 𝐷 = (distβ€˜πΎ) ∧ (MetOpenβ€˜π·) = (TopOpenβ€˜πΎ)))

Proof of Theorem tmslemOLD
StepHypRef Expression
1 elfvdm 6922 . . . 4 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝑋 ∈ dom ∞Met)
2 tmsval.m . . . . 5 𝑀 = {⟨(Baseβ€˜ndx), π‘‹βŸ©, ⟨(distβ€˜ndx), 𝐷⟩}
3 df-ds 17228 . . . . 5 dist = Slot 12
4 1nn 12227 . . . . . 6 1 ∈ β„•
5 2nn0 12493 . . . . . 6 2 ∈ β„•0
6 1nn0 12492 . . . . . 6 1 ∈ β„•0
7 1lt10 12820 . . . . . 6 1 < 10
84, 5, 6, 7declti 12719 . . . . 5 1 < 12
9 2nn 12289 . . . . . 6 2 ∈ β„•
106, 9decnncl 12701 . . . . 5 12 ∈ β„•
112, 3, 8, 102strbas 17176 . . . 4 (𝑋 ∈ dom ∞Met β†’ 𝑋 = (Baseβ€˜π‘€))
121, 11syl 17 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝑋 = (Baseβ€˜π‘€))
13 xmetf 24190 . . . . 5 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆβ„*)
14 ffn 6711 . . . . 5 (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„* β†’ 𝐷 Fn (𝑋 Γ— 𝑋))
15 fnresdm 6663 . . . . 5 (𝐷 Fn (𝑋 Γ— 𝑋) β†’ (𝐷 β†Ύ (𝑋 Γ— 𝑋)) = 𝐷)
1613, 14, 153syl 18 . . . 4 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐷 β†Ύ (𝑋 Γ— 𝑋)) = 𝐷)
172, 3, 8, 102strop 17177 . . . . 5 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐷 = (distβ€˜π‘€))
1817reseq1d 5974 . . . 4 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐷 β†Ύ (𝑋 Γ— 𝑋)) = ((distβ€˜π‘€) β†Ύ (𝑋 Γ— 𝑋)))
1916, 18eqtr3d 2768 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐷 = ((distβ€˜π‘€) β†Ύ (𝑋 Γ— 𝑋)))
20 tmsval.k . . . 4 𝐾 = (toMetSpβ€˜π·)
212, 20tmsval 24344 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐾 = (𝑀 sSet ⟨(TopSetβ€˜ndx), (MetOpenβ€˜π·)⟩))
2212, 19, 21setsmsbas 24336 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝑋 = (Baseβ€˜πΎ))
2312, 19, 21setsmsds 24338 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (distβ€˜π‘€) = (distβ€˜πΎ))
2417, 23eqtrd 2766 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐷 = (distβ€˜πΎ))
25 prex 5425 . . . . 5 {⟨(Baseβ€˜ndx), π‘‹βŸ©, ⟨(distβ€˜ndx), 𝐷⟩} ∈ V
262, 25eqeltri 2823 . . . 4 𝑀 ∈ V
2726a1i 11 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝑀 ∈ V)
2812, 19, 21, 27setsmstopn 24341 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (MetOpenβ€˜π·) = (TopOpenβ€˜πΎ))
2922, 24, 283jca 1125 1 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝑋 = (Baseβ€˜πΎ) ∧ 𝐷 = (distβ€˜πΎ) ∧ (MetOpenβ€˜π·) = (TopOpenβ€˜πΎ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  Vcvv 3468  {cpr 4625  βŸ¨cop 4629   Γ— cxp 5667  dom cdm 5669   β†Ύ cres 5671   Fn wfn 6532  βŸΆwf 6533  β€˜cfv 6537  1c1 11113  β„*cxr 11251  2c2 12271  cdc 12681  ndxcnx 17135  Basecbs 17153  distcds 17215  TopOpenctopn 17376  βˆžMetcxmet 21225  MetOpencmopn 21230  toMetSpctms 24180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12981  df-xneg 13098  df-xadd 13099  df-xmul 13100  df-fz 13491  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-tset 17225  df-ds 17228  df-rest 17377  df-topn 17378  df-topgen 17398  df-psmet 21232  df-xmet 21233  df-bl 21235  df-mopn 21236  df-top 22751  df-topon 22768  df-bases 22804  df-tms 24183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator