![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tmslemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of tmslem 23981 as of 28-Oct-2024. Lemma for tmsbas 23983, tmsds 23984, and tmstopn 23985. (Contributed by Mario Carneiro, 2-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
tmsval.m | β’ π = {β¨(Baseβndx), πβ©, β¨(distβndx), π·β©} |
tmsval.k | β’ πΎ = (toMetSpβπ·) |
Ref | Expression |
---|---|
tmslemOLD | β’ (π· β (βMetβπ) β (π = (BaseβπΎ) β§ π· = (distβπΎ) β§ (MetOpenβπ·) = (TopOpenβπΎ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6925 | . . . 4 β’ (π· β (βMetβπ) β π β dom βMet) | |
2 | tmsval.m | . . . . 5 β’ π = {β¨(Baseβndx), πβ©, β¨(distβndx), π·β©} | |
3 | df-ds 17215 | . . . . 5 β’ dist = Slot ;12 | |
4 | 1nn 12219 | . . . . . 6 β’ 1 β β | |
5 | 2nn0 12485 | . . . . . 6 β’ 2 β β0 | |
6 | 1nn0 12484 | . . . . . 6 β’ 1 β β0 | |
7 | 1lt10 12812 | . . . . . 6 β’ 1 < ;10 | |
8 | 4, 5, 6, 7 | declti 12711 | . . . . 5 β’ 1 < ;12 |
9 | 2nn 12281 | . . . . . 6 β’ 2 β β | |
10 | 6, 9 | decnncl 12693 | . . . . 5 β’ ;12 β β |
11 | 2, 3, 8, 10 | 2strbas 17163 | . . . 4 β’ (π β dom βMet β π = (Baseβπ)) |
12 | 1, 11 | syl 17 | . . 3 β’ (π· β (βMetβπ) β π = (Baseβπ)) |
13 | xmetf 23826 | . . . . 5 β’ (π· β (βMetβπ) β π·:(π Γ π)βΆβ*) | |
14 | ffn 6714 | . . . . 5 β’ (π·:(π Γ π)βΆβ* β π· Fn (π Γ π)) | |
15 | fnresdm 6666 | . . . . 5 β’ (π· Fn (π Γ π) β (π· βΎ (π Γ π)) = π·) | |
16 | 13, 14, 15 | 3syl 18 | . . . 4 β’ (π· β (βMetβπ) β (π· βΎ (π Γ π)) = π·) |
17 | 2, 3, 8, 10 | 2strop 17164 | . . . . 5 β’ (π· β (βMetβπ) β π· = (distβπ)) |
18 | 17 | reseq1d 5978 | . . . 4 β’ (π· β (βMetβπ) β (π· βΎ (π Γ π)) = ((distβπ) βΎ (π Γ π))) |
19 | 16, 18 | eqtr3d 2774 | . . 3 β’ (π· β (βMetβπ) β π· = ((distβπ) βΎ (π Γ π))) |
20 | tmsval.k | . . . 4 β’ πΎ = (toMetSpβπ·) | |
21 | 2, 20 | tmsval 23980 | . . 3 β’ (π· β (βMetβπ) β πΎ = (π sSet β¨(TopSetβndx), (MetOpenβπ·)β©)) |
22 | 12, 19, 21 | setsmsbas 23972 | . 2 β’ (π· β (βMetβπ) β π = (BaseβπΎ)) |
23 | 12, 19, 21 | setsmsds 23974 | . . 3 β’ (π· β (βMetβπ) β (distβπ) = (distβπΎ)) |
24 | 17, 23 | eqtrd 2772 | . 2 β’ (π· β (βMetβπ) β π· = (distβπΎ)) |
25 | prex 5431 | . . . . 5 β’ {β¨(Baseβndx), πβ©, β¨(distβndx), π·β©} β V | |
26 | 2, 25 | eqeltri 2829 | . . . 4 β’ π β V |
27 | 26 | a1i 11 | . . 3 β’ (π· β (βMetβπ) β π β V) |
28 | 12, 19, 21, 27 | setsmstopn 23977 | . 2 β’ (π· β (βMetβπ) β (MetOpenβπ·) = (TopOpenβπΎ)) |
29 | 22, 24, 28 | 3jca 1128 | 1 β’ (π· β (βMetβπ) β (π = (BaseβπΎ) β§ π· = (distβπΎ) β§ (MetOpenβπ·) = (TopOpenβπΎ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 Vcvv 3474 {cpr 4629 β¨cop 4633 Γ cxp 5673 dom cdm 5675 βΎ cres 5677 Fn wfn 6535 βΆwf 6536 βcfv 6540 1c1 11107 β*cxr 11243 2c2 12263 ;cdc 12673 ndxcnx 17122 Basecbs 17140 distcds 17202 TopOpenctopn 17363 βMetcxmet 20921 MetOpencmopn 20926 toMetSpctms 23816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-tset 17212 df-ds 17215 df-rest 17364 df-topn 17365 df-topgen 17385 df-psmet 20928 df-xmet 20929 df-bl 20931 df-mopn 20932 df-top 22387 df-topon 22404 df-bases 22440 df-tms 23819 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |