Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tmslemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of tmslem 23518 as of 28-Oct-2024. Lemma for tmsbas 23520, tmsds 23521, and tmstopn 23522. (Contributed by Mario Carneiro, 2-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
tmsval.m | ⊢ 𝑀 = {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} |
tmsval.k | ⊢ 𝐾 = (toMetSp‘𝐷) |
Ref | Expression |
---|---|
tmslemOLD | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6785 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) | |
2 | tmsval.m | . . . . 5 ⊢ 𝑀 = {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} | |
3 | df-ds 16885 | . . . . 5 ⊢ dist = Slot ;12 | |
4 | 1nn 11889 | . . . . . 6 ⊢ 1 ∈ ℕ | |
5 | 2nn0 12155 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
6 | 1nn0 12154 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
7 | 1lt10 12480 | . . . . . 6 ⊢ 1 < ;10 | |
8 | 4, 5, 6, 7 | declti 12379 | . . . . 5 ⊢ 1 < ;12 |
9 | 2nn 11951 | . . . . . 6 ⊢ 2 ∈ ℕ | |
10 | 6, 9 | decnncl 12361 | . . . . 5 ⊢ ;12 ∈ ℕ |
11 | 2, 3, 8, 10 | 2strbas 16836 | . . . 4 ⊢ (𝑋 ∈ dom ∞Met → 𝑋 = (Base‘𝑀)) |
12 | 1, 11 | syl 17 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝑀)) |
13 | xmetf 23365 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
14 | ffn 6581 | . . . . 5 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → 𝐷 Fn (𝑋 × 𝑋)) | |
15 | fnresdm 6532 | . . . . 5 ⊢ (𝐷 Fn (𝑋 × 𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷) | |
16 | 13, 14, 15 | 3syl 18 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷) |
17 | 2, 3, 8, 10 | 2strop 16837 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝑀)) |
18 | 17 | reseq1d 5878 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
19 | 16, 18 | eqtr3d 2781 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
20 | tmsval.k | . . . 4 ⊢ 𝐾 = (toMetSp‘𝐷) | |
21 | 2, 20 | tmsval 23517 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
22 | 12, 19, 21 | setsmsbas 23511 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝐾)) |
23 | 12, 19, 21 | setsmsds 23512 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (dist‘𝑀) = (dist‘𝐾)) |
24 | 17, 23 | eqtrd 2779 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝐾)) |
25 | prex 5349 | . . . . 5 ⊢ {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} ∈ V | |
26 | 2, 25 | eqeltri 2836 | . . . 4 ⊢ 𝑀 ∈ V |
27 | 26 | a1i 11 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑀 ∈ V) |
28 | 12, 19, 21, 27 | setsmstopn 23514 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
29 | 22, 24, 28 | 3jca 1130 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 = wceq 1543 ∈ wcel 2112 Vcvv 3423 {cpr 4560 〈cop 4564 × cxp 5577 dom cdm 5579 ↾ cres 5581 Fn wfn 6410 ⟶wf 6411 ‘cfv 6415 1c1 10778 ℝ*cxr 10914 2c2 11933 ;cdc 12341 ndxcnx 16797 Basecbs 16815 distcds 16872 TopOpenctopn 17024 ∞Metcxmet 20470 MetOpencmopn 20475 toMetSpctms 23355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 ax-pre-sup 10855 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-1st 7801 df-2nd 7802 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-er 8433 df-map 8552 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-sup 9106 df-inf 9107 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-div 11538 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 df-8 11947 df-9 11948 df-n0 12139 df-z 12225 df-dec 12342 df-uz 12487 df-q 12593 df-rp 12635 df-xneg 12752 df-xadd 12753 df-xmul 12754 df-fz 13144 df-struct 16751 df-sets 16768 df-slot 16786 df-ndx 16798 df-base 16816 df-tset 16882 df-ds 16885 df-rest 17025 df-topn 17026 df-topgen 17046 df-psmet 20477 df-xmet 20478 df-bl 20480 df-mopn 20481 df-top 21926 df-topon 21943 df-bases 21979 df-tms 23358 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |