MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-en Structured version   Visualization version   GIF version

Definition df-en 8734
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 8743. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-en ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Distinct variable group:   𝑥,𝑦,𝑓

Detailed syntax breakdown of Definition df-en
StepHypRef Expression
1 cen 8730 . 2 class
2 vx . . . . . 6 setvar 𝑥
32cv 1538 . . . . 5 class 𝑥
4 vy . . . . . 6 setvar 𝑦
54cv 1538 . . . . 5 class 𝑦
6 vf . . . . . 6 setvar 𝑓
76cv 1538 . . . . 5 class 𝑓
83, 5, 7wf1o 6432 . . . 4 wff 𝑓:𝑥1-1-onto𝑦
98, 6wex 1782 . . 3 wff 𝑓 𝑓:𝑥1-1-onto𝑦
109, 2, 4copab 5136 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
111, 10wceq 1539 1 wff ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Colors of variables: wff setvar class
This definition is referenced by:  relen  8738  breng  8742  brenOLD  8744  enssdom  8765
  Copyright terms: Public domain W3C validator