MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-en Structured version   Visualization version   GIF version

Definition df-en 8937
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 8946. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-en ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Distinct variable group:   𝑥,𝑦,𝑓

Detailed syntax breakdown of Definition df-en
StepHypRef Expression
1 cen 8933 . 2 class
2 vx . . . . . 6 setvar 𝑥
32cv 1532 . . . . 5 class 𝑥
4 vy . . . . . 6 setvar 𝑦
54cv 1532 . . . . 5 class 𝑦
6 vf . . . . . 6 setvar 𝑓
76cv 1532 . . . . 5 class 𝑓
83, 5, 7wf1o 6533 . . . 4 wff 𝑓:𝑥1-1-onto𝑦
98, 6wex 1773 . . 3 wff 𝑓 𝑓:𝑥1-1-onto𝑦
109, 2, 4copab 5201 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
111, 10wceq 1533 1 wff ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Colors of variables: wff setvar class
This definition is referenced by:  relen  8941  breng  8945  brenOLD  8947  enssdom  8970
  Copyright terms: Public domain W3C validator