MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-en Structured version   Visualization version   GIF version

Definition df-en 8998
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 9007. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-en ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Distinct variable group:   𝑥,𝑦,𝑓

Detailed syntax breakdown of Definition df-en
StepHypRef Expression
1 cen 8994 . 2 class
2 vx . . . . . 6 setvar 𝑥
32cv 1536 . . . . 5 class 𝑥
4 vy . . . . . 6 setvar 𝑦
54cv 1536 . . . . 5 class 𝑦
6 vf . . . . . 6 setvar 𝑓
76cv 1536 . . . . 5 class 𝑓
83, 5, 7wf1o 6567 . . . 4 wff 𝑓:𝑥1-1-onto𝑦
98, 6wex 1777 . . 3 wff 𝑓 𝑓:𝑥1-1-onto𝑦
109, 2, 4copab 5228 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
111, 10wceq 1537 1 wff ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Colors of variables: wff setvar class
This definition is referenced by:  relen  9002  breng  9006  brenOLD  9008  enssdom  9031
  Copyright terms: Public domain W3C validator