| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-en | Structured version Visualization version GIF version | ||
| Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define ≈ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 8930. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| df-en | ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cen 8917 | . 2 class ≈ | |
| 2 | vx | . . . . . 6 setvar 𝑥 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 4 | cv 1539 | . . . . 5 class 𝑦 |
| 6 | vf | . . . . . 6 setvar 𝑓 | |
| 7 | 6 | cv 1539 | . . . . 5 class 𝑓 |
| 8 | 3, 5, 7 | wf1o 6512 | . . . 4 wff 𝑓:𝑥–1-1-onto→𝑦 |
| 9 | 8, 6 | wex 1779 | . . 3 wff ∃𝑓 𝑓:𝑥–1-1-onto→𝑦 |
| 10 | 9, 2, 4 | copab 5171 | . 2 class {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
| 11 | 1, 10 | wceq 1540 | 1 wff ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
| Colors of variables: wff setvar class |
| This definition is referenced by: relen 8925 breng 8929 enssdom 8950 |
| Copyright terms: Public domain | W3C validator |