| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-en | Structured version Visualization version GIF version | ||
| Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define ≈ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 8977. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| df-en | ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cen 8964 | . 2 class ≈ | |
| 2 | vx | . . . . . 6 setvar 𝑥 | |
| 3 | 2 | cv 1538 | . . . . 5 class 𝑥 |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 4 | cv 1538 | . . . . 5 class 𝑦 |
| 6 | vf | . . . . . 6 setvar 𝑓 | |
| 7 | 6 | cv 1538 | . . . . 5 class 𝑓 |
| 8 | 3, 5, 7 | wf1o 6540 | . . . 4 wff 𝑓:𝑥–1-1-onto→𝑦 |
| 9 | 8, 6 | wex 1778 | . . 3 wff ∃𝑓 𝑓:𝑥–1-1-onto→𝑦 |
| 10 | 9, 2, 4 | copab 5185 | . 2 class {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
| 11 | 1, 10 | wceq 1539 | 1 wff ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
| Colors of variables: wff setvar class |
| This definition is referenced by: relen 8972 breng 8976 enssdom 8999 |
| Copyright terms: Public domain | W3C validator |