MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-en Structured version   Visualization version   GIF version

Definition df-en 8669
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 8678. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-en ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Distinct variable group:   𝑥,𝑦,𝑓

Detailed syntax breakdown of Definition df-en
StepHypRef Expression
1 cen 8665 . 2 class
2 vx . . . . . 6 setvar 𝑥
32cv 1542 . . . . 5 class 𝑥
4 vy . . . . . 6 setvar 𝑦
54cv 1542 . . . . 5 class 𝑦
6 vf . . . . . 6 setvar 𝑓
76cv 1542 . . . . 5 class 𝑓
83, 5, 7wf1o 6414 . . . 4 wff 𝑓:𝑥1-1-onto𝑦
98, 6wex 1787 . . 3 wff 𝑓 𝑓:𝑥1-1-onto𝑦
109, 2, 4copab 5132 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
111, 10wceq 1543 1 wff ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Colors of variables: wff setvar class
This definition is referenced by:  relen  8673  breng  8677  brenOLD  8679  enssdom  8697
  Copyright terms: Public domain W3C validator