| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-en | Structured version Visualization version GIF version | ||
| Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define ≈ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 8874. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| df-en | ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cen 8861 | . 2 class ≈ | |
| 2 | vx | . . . . . 6 setvar 𝑥 | |
| 3 | 2 | cv 1540 | . . . . 5 class 𝑥 |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 4 | cv 1540 | . . . . 5 class 𝑦 |
| 6 | vf | . . . . . 6 setvar 𝑓 | |
| 7 | 6 | cv 1540 | . . . . 5 class 𝑓 |
| 8 | 3, 5, 7 | wf1o 6476 | . . . 4 wff 𝑓:𝑥–1-1-onto→𝑦 |
| 9 | 8, 6 | wex 1780 | . . 3 wff ∃𝑓 𝑓:𝑥–1-1-onto→𝑦 |
| 10 | 9, 2, 4 | copab 5151 | . 2 class {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
| 11 | 1, 10 | wceq 1541 | 1 wff ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
| Colors of variables: wff setvar class |
| This definition is referenced by: relen 8869 breng 8873 enssdom 8894 |
| Copyright terms: Public domain | W3C validator |