MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-en Structured version   Visualization version   GIF version

Definition df-en 8936
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 8945. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-en ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Distinct variable group:   𝑥,𝑦,𝑓

Detailed syntax breakdown of Definition df-en
StepHypRef Expression
1 cen 8932 . 2 class
2 vx . . . . . 6 setvar 𝑥
32cv 1541 . . . . 5 class 𝑥
4 vy . . . . . 6 setvar 𝑦
54cv 1541 . . . . 5 class 𝑦
6 vf . . . . . 6 setvar 𝑓
76cv 1541 . . . . 5 class 𝑓
83, 5, 7wf1o 6539 . . . 4 wff 𝑓:𝑥1-1-onto𝑦
98, 6wex 1782 . . 3 wff 𝑓 𝑓:𝑥1-1-onto𝑦
109, 2, 4copab 5209 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
111, 10wceq 1542 1 wff ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Colors of variables: wff setvar class
This definition is referenced by:  relen  8940  breng  8944  brenOLD  8946  enssdom  8969
  Copyright terms: Public domain W3C validator