MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-en Structured version   Visualization version   GIF version

Definition df-en 8865
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 8874. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-en ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Distinct variable group:   𝑥,𝑦,𝑓

Detailed syntax breakdown of Definition df-en
StepHypRef Expression
1 cen 8861 . 2 class
2 vx . . . . . 6 setvar 𝑥
32cv 1540 . . . . 5 class 𝑥
4 vy . . . . . 6 setvar 𝑦
54cv 1540 . . . . 5 class 𝑦
6 vf . . . . . 6 setvar 𝑓
76cv 1540 . . . . 5 class 𝑓
83, 5, 7wf1o 6476 . . . 4 wff 𝑓:𝑥1-1-onto𝑦
98, 6wex 1780 . . 3 wff 𝑓 𝑓:𝑥1-1-onto𝑦
109, 2, 4copab 5151 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
111, 10wceq 1541 1 wff ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Colors of variables: wff setvar class
This definition is referenced by:  relen  8869  breng  8873  enssdom  8894
  Copyright terms: Public domain W3C validator