![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-en | Structured version Visualization version GIF version |
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define ≈ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 8988. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
df-en | ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cen 8975 | . 2 class ≈ | |
2 | vx | . . . . . 6 setvar 𝑥 | |
3 | 2 | cv 1534 | . . . . 5 class 𝑥 |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 4 | cv 1534 | . . . . 5 class 𝑦 |
6 | vf | . . . . . 6 setvar 𝑓 | |
7 | 6 | cv 1534 | . . . . 5 class 𝑓 |
8 | 3, 5, 7 | wf1o 6557 | . . . 4 wff 𝑓:𝑥–1-1-onto→𝑦 |
9 | 8, 6 | wex 1774 | . . 3 wff ∃𝑓 𝑓:𝑥–1-1-onto→𝑦 |
10 | 9, 2, 4 | copab 5211 | . 2 class {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
11 | 1, 10 | wceq 1535 | 1 wff ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
Colors of variables: wff setvar class |
This definition is referenced by: relen 8983 breng 8987 enssdom 9010 |
Copyright terms: Public domain | W3C validator |