![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-en | Structured version Visualization version GIF version |
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define ≈ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 8946. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
df-en | ⊢ ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cen 8933 | . 2 class ≈ | |
2 | vx | . . . . . 6 setvar 𝑥 | |
3 | 2 | cv 1532 | . . . . 5 class 𝑥 |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 4 | cv 1532 | . . . . 5 class 𝑦 |
6 | vf | . . . . . 6 setvar 𝑓 | |
7 | 6 | cv 1532 | . . . . 5 class 𝑓 |
8 | 3, 5, 7 | wf1o 6533 | . . . 4 wff 𝑓:𝑥–1-1-onto→𝑦 |
9 | 8, 6 | wex 1773 | . . 3 wff ∃𝑓 𝑓:𝑥–1-1-onto→𝑦 |
10 | 9, 2, 4 | copab 5201 | . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
11 | 1, 10 | wceq 1533 | 1 wff ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
Colors of variables: wff setvar class |
This definition is referenced by: relen 8941 breng 8945 brenOLD 8947 enssdom 8970 |
Copyright terms: Public domain | W3C validator |