MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enssdom Structured version   Visualization version   GIF version

Theorem enssdom 8909
Description: Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.) (Proof shortened by TM, 10-Feb-2026.)
Assertion
Ref Expression
enssdom ≈ ⊆ ≼

Proof of Theorem enssdom
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of1 6770 . . . 4 (𝑓:𝑥1-1-onto𝑦𝑓:𝑥1-1𝑦)
21eximi 1836 . . 3 (∃𝑓 𝑓:𝑥1-1-onto𝑦 → ∃𝑓 𝑓:𝑥1-1𝑦)
32ssopab2i 5495 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦} ⊆ {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
4 df-en 8880 . 2 ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
5 df-dom 8881 . 2 ≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
63, 4, 53sstr4i 3982 1 ≈ ⊆ ≼
Colors of variables: wff setvar class
Syntax hints:  wex 1780  wss 3898  {copab 5157  1-1wf1 6486  1-1-ontowf1o 6488  cen 8876  cdom 8877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-ss 3915  df-opab 5158  df-f1o 6496  df-en 8880  df-dom 8881
This theorem is referenced by:  dfdom2  8911  endom  8912
  Copyright terms: Public domain W3C validator