MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enssdom Structured version   Visualization version   GIF version

Theorem enssdom 8925
Description: Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.)
Assertion
Ref Expression
enssdom ≈ ⊆ ≼

Proof of Theorem enssdom
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relen 8900 . 2 Rel ≈
2 f1of1 6781 . . . . 5 (𝑓:𝑥1-1-onto𝑦𝑓:𝑥1-1𝑦)
32eximi 1835 . . . 4 (∃𝑓 𝑓:𝑥1-1-onto𝑦 → ∃𝑓 𝑓:𝑥1-1𝑦)
4 opabidw 5479 . . . 4 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦} ↔ ∃𝑓 𝑓:𝑥1-1-onto𝑦)
5 opabidw 5479 . . . 4 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦} ↔ ∃𝑓 𝑓:𝑥1-1𝑦)
63, 4, 53imtr4i 292 . . 3 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦} → ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦})
7 df-en 8896 . . . 4 ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
87eleq2i 2820 . . 3 (⟨𝑥, 𝑦⟩ ∈ ≈ ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦})
9 df-dom 8897 . . . 4 ≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
109eleq2i 2820 . . 3 (⟨𝑥, 𝑦⟩ ∈ ≼ ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦})
116, 8, 103imtr4i 292 . 2 (⟨𝑥, 𝑦⟩ ∈ ≈ → ⟨𝑥, 𝑦⟩ ∈ ≼ )
121, 11relssi 5741 1 ≈ ⊆ ≼
Colors of variables: wff setvar class
Syntax hints:  wex 1779  wcel 2109  wss 3911  cop 4591  {copab 5164  1-1wf1 6496  1-1-ontowf1o 6498  cen 8892  cdom 8893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-opab 5165  df-xp 5637  df-rel 5638  df-f1o 6506  df-en 8896  df-dom 8897
This theorem is referenced by:  dfdom2  8926  endom  8927
  Copyright terms: Public domain W3C validator