| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enssdom | Structured version Visualization version GIF version | ||
| Description: Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.) (Proof shortened by TM, 10-Feb-2026.) |
| Ref | Expression |
|---|---|
| enssdom | ⊢ ≈ ⊆ ≼ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of1 6770 | . . . 4 ⊢ (𝑓:𝑥–1-1-onto→𝑦 → 𝑓:𝑥–1-1→𝑦) | |
| 2 | 1 | eximi 1836 | . . 3 ⊢ (∃𝑓 𝑓:𝑥–1-1-onto→𝑦 → ∃𝑓 𝑓:𝑥–1-1→𝑦) |
| 3 | 2 | ssopab2i 5495 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} ⊆ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} |
| 4 | df-en 8880 | . 2 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
| 5 | df-dom 8881 | . 2 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
| 6 | 3, 4, 5 | 3sstr4i 3982 | 1 ⊢ ≈ ⊆ ≼ |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1780 ⊆ wss 3898 {copab 5157 –1-1→wf1 6486 –1-1-onto→wf1o 6488 ≈ cen 8876 ≼ cdom 8877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-ss 3915 df-opab 5158 df-f1o 6496 df-en 8880 df-dom 8881 |
| This theorem is referenced by: dfdom2 8911 endom 8912 |
| Copyright terms: Public domain | W3C validator |