| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bren | Structured version Visualization version GIF version | ||
| Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) Extract breng 8927 as an intermediate result. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| bren | ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 8926 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 2 | f1ofn 6801 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 Fn 𝐴) | |
| 3 | fndm 6621 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
| 4 | vex 3451 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
| 5 | 4 | dmex 7885 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
| 6 | 3, 5 | eqeltrrdi 2837 | . . . . 5 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) |
| 7 | 2, 6 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐴 ∈ V) |
| 8 | f1ofo 6807 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
| 9 | forn 6775 | . . . . . 6 ⊢ (𝑓:𝐴–onto→𝐵 → ran 𝑓 = 𝐵) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ran 𝑓 = 𝐵) |
| 11 | 4 | rnex 7886 | . . . . 5 ⊢ ran 𝑓 ∈ V |
| 12 | 10, 11 | eqeltrrdi 2837 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V) |
| 13 | 7, 12 | jca 511 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 14 | 13 | exlimiv 1930 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 15 | breng 8927 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |
| 16 | 1, 14, 15 | pm5.21nii 378 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 dom cdm 5638 ran crn 5639 Fn wfn 6506 –onto→wfo 6509 –1-1-onto→wf1o 6510 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-en 8919 |
| This theorem is referenced by: domen 8933 f1oen3g 8938 ener 8972 en0ALT 8990 unen 9017 enfixsn 9050 canth2 9094 mapen 9105 ssenen 9115 rexdif1enOLD 9123 dif1en 9124 dif1enOLD 9126 ssfiALT 9138 ensymfib 9148 entrfil 9149 phplem2 9169 php3 9173 isinf 9207 isinfOLD 9208 domunfican 9272 fiint 9277 fiintOLD 9278 mapfien2 9360 unxpwdom2 9541 isinffi 9945 infxpenc2 9975 fseqen 9980 dfac8b 9984 infpwfien 10015 dfac12r 10100 infmap2 10170 cff1 10211 infpssr 10261 fin4en1 10262 enfin2i 10274 enfin1ai 10337 axcc3 10391 axcclem 10410 numth 10425 ttukey2g 10469 canthnum 10602 canthwe 10604 canthp1 10607 pwfseq 10617 tskuni 10736 gruen 10765 hasheqf1o 14314 hashfacen 14419 fz1f1o 15676 ruc 16211 cnso 16215 eulerth 16753 ablfaclem3 20019 lbslcic 21750 uvcendim 21756 indishmph 23685 ufldom 23849 ovolctb 25391 ovoliunlem3 25405 iunmbl2 25458 dyadmbl 25501 vitali 25514 cusgrfilem3 29385 padct 32643 f1ocnt 32725 volmeas 34221 eulerpart 34373 derangenlem 35158 mblfinlem1 37651 sticksstones4 42137 sticksstones20 42154 eldioph2lem1 42748 isnumbasgrplem1 43090 nnf1oxpnn 45189 sprsymrelen 47501 prproropen 47509 uspgrspren 48140 uspgrbisymrel 48142 1aryenef 48634 2aryenef 48645 rrx2xpreen 48708 |
| Copyright terms: Public domain | W3C validator |