| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bren | Structured version Visualization version GIF version | ||
| Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) Extract breng 8884 as an intermediate result. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| bren | ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 8883 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 2 | f1ofn 6769 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 Fn 𝐴) | |
| 3 | fndm 6589 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
| 4 | vex 3441 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
| 5 | 4 | dmex 7845 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
| 6 | 3, 5 | eqeltrrdi 2842 | . . . . 5 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) |
| 7 | 2, 6 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐴 ∈ V) |
| 8 | f1ofo 6775 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
| 9 | forn 6743 | . . . . . 6 ⊢ (𝑓:𝐴–onto→𝐵 → ran 𝑓 = 𝐵) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ran 𝑓 = 𝐵) |
| 11 | 4 | rnex 7846 | . . . . 5 ⊢ ran 𝑓 ∈ V |
| 12 | 10, 11 | eqeltrrdi 2842 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V) |
| 13 | 7, 12 | jca 511 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 14 | 13 | exlimiv 1931 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 15 | breng 8884 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |
| 16 | 1, 14, 15 | pm5.21nii 378 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 Vcvv 3437 class class class wbr 5093 dom cdm 5619 ran crn 5620 Fn wfn 6481 –onto→wfo 6484 –1-1-onto→wf1o 6485 ≈ cen 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-en 8876 |
| This theorem is referenced by: domen 8890 f1oen3g 8895 ener 8930 en0ALT 8948 unen 8974 enfixsn 9006 canth2 9050 mapen 9061 ssenen 9071 dif1en 9078 ssfiALT 9090 ensymfib 9100 entrfil 9101 phplem2 9121 php3 9125 isinf 9156 domunfican 9213 fiint 9218 mapfien2 9300 unxpwdom2 9481 isinffi 9892 infxpenc2 9920 fseqen 9925 dfac8b 9929 infpwfien 9960 dfac12r 10045 infmap2 10115 cff1 10156 infpssr 10206 fin4en1 10207 enfin2i 10219 enfin1ai 10282 axcc3 10336 axcclem 10355 numth 10370 ttukey2g 10414 canthnum 10547 canthwe 10549 canthp1 10552 pwfseq 10562 tskuni 10681 gruen 10710 hasheqf1o 14258 hashfacen 14363 fz1f1o 15619 ruc 16154 cnso 16158 eulerth 16696 ablfaclem3 20003 lbslcic 21780 uvcendim 21786 indishmph 23714 ufldom 23878 ovolctb 25419 ovoliunlem3 25433 iunmbl2 25486 dyadmbl 25529 vitali 25542 cusgrfilem3 29438 padct 32705 f1ocnt 32787 volmeas 34265 eulerpart 34416 derangenlem 35236 mblfinlem1 37717 sticksstones4 42262 sticksstones20 42279 eldioph2lem1 42877 isnumbasgrplem1 43218 nnf1oxpnn 45316 sprsymrelen 47624 prproropen 47632 uspgrspren 48276 uspgrbisymrel 48278 1aryenef 48770 2aryenef 48781 rrx2xpreen 48844 |
| Copyright terms: Public domain | W3C validator |