![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bren | Structured version Visualization version GIF version |
Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) Extract breng 8952 as an intermediate result. (Revised by BTernaryTau, 23-Sep-2024.) |
Ref | Expression |
---|---|
bren | ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 8951 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
2 | f1ofn 6835 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 Fn 𝐴) | |
3 | fndm 6653 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
4 | vex 3476 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
5 | 4 | dmex 7906 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
6 | 3, 5 | eqeltrrdi 2840 | . . . . 5 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) |
7 | 2, 6 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐴 ∈ V) |
8 | f1ofo 6841 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
9 | forn 6809 | . . . . . 6 ⊢ (𝑓:𝐴–onto→𝐵 → ran 𝑓 = 𝐵) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ran 𝑓 = 𝐵) |
11 | 4 | rnex 7907 | . . . . 5 ⊢ ran 𝑓 ∈ V |
12 | 10, 11 | eqeltrrdi 2840 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V) |
13 | 7, 12 | jca 510 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
14 | 13 | exlimiv 1931 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
15 | breng 8952 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |
16 | 1, 14, 15 | pm5.21nii 377 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1539 ∃wex 1779 ∈ wcel 2104 Vcvv 3472 class class class wbr 5149 dom cdm 5677 ran crn 5678 Fn wfn 6539 –onto→wfo 6542 –1-1-onto→wf1o 6543 ≈ cen 8940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-dm 5687 df-rn 5688 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-en 8944 |
This theorem is referenced by: domen 8961 f1oen3g 8966 ener 9001 en0OLD 9018 en0ALT 9019 ensn1OLD 9022 en1OLD 9026 en2snOLD 9046 unen 9050 enfixsn 9085 canth2 9134 mapen 9145 ssenen 9155 rexdif1enOLD 9163 dif1en 9164 dif1enOLD 9166 ssfiALT 9178 ensymfib 9191 entrfil 9192 phplem2 9212 php3 9216 phplem4OLD 9224 php3OLD 9228 isinf 9264 isinfOLD 9265 domunfican 9324 fiint 9328 mapfien2 9408 unxpwdom2 9587 isinffi 9991 infxpenc2 10021 fseqen 10026 dfac8b 10030 infpwfien 10061 dfac12r 10145 infmap2 10217 cff1 10257 infpssr 10307 fin4en1 10308 enfin2i 10320 enfin1ai 10383 axcc3 10437 axcclem 10456 numth 10471 ttukey2g 10515 canthnum 10648 canthwe 10650 canthp1 10653 pwfseq 10663 tskuni 10782 gruen 10811 hasheqf1o 14315 hashfacen 14419 hashfacenOLD 14420 fz1f1o 15662 ruc 16192 cnso 16196 eulerth 16722 ablfaclem3 20000 lbslcic 21617 uvcendim 21623 indishmph 23524 ufldom 23688 ovolctb 25241 ovoliunlem3 25255 iunmbl2 25308 dyadmbl 25351 vitali 25364 cusgrfilem3 28979 padct 32209 f1ocnt 32278 volmeas 33525 eulerpart 33677 derangenlem 34458 mblfinlem1 36830 sticksstones4 41273 sticksstones20 41290 eldioph2lem1 41802 isnumbasgrplem1 42147 nnf1oxpnn 44194 sprsymrelen 46468 prproropen 46476 uspgrspren 46830 uspgrbisymrel 46832 1aryenef 47420 2aryenef 47431 rrx2xpreen 47494 |
Copyright terms: Public domain | W3C validator |