Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bren | Structured version Visualization version GIF version |
Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) (Proof shortened by BTernaryTau, 23-Sep-2024.) |
Ref | Expression |
---|---|
bren | ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 8741 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
2 | f1ofn 6717 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 Fn 𝐴) | |
3 | fndm 6536 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
4 | vex 3436 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
5 | 4 | dmex 7758 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
6 | 3, 5 | eqeltrrdi 2848 | . . . . 5 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) |
7 | 2, 6 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐴 ∈ V) |
8 | f1ofo 6723 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
9 | forn 6691 | . . . . . 6 ⊢ (𝑓:𝐴–onto→𝐵 → ran 𝑓 = 𝐵) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ran 𝑓 = 𝐵) |
11 | 4 | rnex 7759 | . . . . 5 ⊢ ran 𝑓 ∈ V |
12 | 10, 11 | eqeltrrdi 2848 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V) |
13 | 7, 12 | jca 512 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
14 | 13 | exlimiv 1933 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
15 | breng 8742 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |
16 | 1, 14, 15 | pm5.21nii 380 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 dom cdm 5589 ran crn 5590 Fn wfn 6428 –onto→wfo 6431 –1-1-onto→wf1o 6432 ≈ cen 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-en 8734 |
This theorem is referenced by: domen 8751 f1oen3g 8754 ener 8787 en0OLD 8804 en0ALT 8805 ensn1OLD 8808 en1OLD 8812 en2snOLD 8832 unen 8836 enfixsn 8868 canth2 8917 mapen 8928 ssenen 8938 rexdif1en 8944 dif1en 8945 ssfiALT 8957 ensymfib 8970 entrfil 8971 phplem2 8991 php3 8995 phplem4OLD 9003 php3OLD 9007 isinf 9036 domunfican 9087 fiint 9091 mapfien2 9168 unxpwdom2 9347 isinffi 9750 infxpenc2 9778 fseqen 9783 dfac8b 9787 infpwfien 9818 dfac12r 9902 infmap2 9974 cff1 10014 infpssr 10064 fin4en1 10065 enfin2i 10077 enfin1ai 10140 axcc3 10194 axcclem 10213 numth 10228 ttukey2g 10272 canthnum 10405 canthwe 10407 canthp1 10410 pwfseq 10420 tskuni 10539 gruen 10568 hasheqf1o 14063 hashfacen 14166 hashfacenOLD 14167 fz1f1o 15422 ruc 15952 cnso 15956 eulerth 16484 ablfaclem3 19690 lbslcic 21048 uvcendim 21054 indishmph 22949 ufldom 23113 ovolctb 24654 ovoliunlem3 24668 iunmbl2 24721 dyadmbl 24764 vitali 24777 cusgrfilem3 27824 padct 31054 f1ocnt 31123 volmeas 32199 eulerpart 32349 derangenlem 33133 mblfinlem1 35814 sticksstones4 40105 sticksstones20 40122 eldioph2lem1 40582 isnumbasgrplem1 40926 nnf1oxpnn 42734 sprsymrelen 44952 prproropen 44960 uspgrspren 45314 uspgrbisymrel 45316 1aryenef 45991 2aryenef 46002 rrx2xpreen 46065 |
Copyright terms: Public domain | W3C validator |