| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bren | Structured version Visualization version GIF version | ||
| Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) Extract breng 8878 as an intermediate result. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| bren | ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 8877 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 2 | f1ofn 6764 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 Fn 𝐴) | |
| 3 | fndm 6584 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
| 4 | vex 3440 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
| 5 | 4 | dmex 7839 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
| 6 | 3, 5 | eqeltrrdi 2840 | . . . . 5 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) |
| 7 | 2, 6 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐴 ∈ V) |
| 8 | f1ofo 6770 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
| 9 | forn 6738 | . . . . . 6 ⊢ (𝑓:𝐴–onto→𝐵 → ran 𝑓 = 𝐵) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ran 𝑓 = 𝐵) |
| 11 | 4 | rnex 7840 | . . . . 5 ⊢ ran 𝑓 ∈ V |
| 12 | 10, 11 | eqeltrrdi 2840 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V) |
| 13 | 7, 12 | jca 511 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 14 | 13 | exlimiv 1931 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 15 | breng 8878 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |
| 16 | 1, 14, 15 | pm5.21nii 378 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 dom cdm 5616 ran crn 5617 Fn wfn 6476 –onto→wfo 6479 –1-1-onto→wf1o 6480 ≈ cen 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-en 8870 |
| This theorem is referenced by: domen 8884 f1oen3g 8889 ener 8923 en0ALT 8941 unen 8967 enfixsn 8999 canth2 9043 mapen 9054 ssenen 9064 dif1en 9071 ssfiALT 9083 ensymfib 9093 entrfil 9094 phplem2 9114 php3 9118 isinf 9149 domunfican 9206 fiint 9211 mapfien2 9293 unxpwdom2 9474 isinffi 9882 infxpenc2 9910 fseqen 9915 dfac8b 9919 infpwfien 9950 dfac12r 10035 infmap2 10105 cff1 10146 infpssr 10196 fin4en1 10197 enfin2i 10209 enfin1ai 10272 axcc3 10326 axcclem 10345 numth 10360 ttukey2g 10404 canthnum 10537 canthwe 10539 canthp1 10542 pwfseq 10552 tskuni 10671 gruen 10700 hasheqf1o 14253 hashfacen 14358 fz1f1o 15614 ruc 16149 cnso 16153 eulerth 16691 ablfaclem3 19999 lbslcic 21776 uvcendim 21782 indishmph 23711 ufldom 23875 ovolctb 25416 ovoliunlem3 25430 iunmbl2 25483 dyadmbl 25526 vitali 25539 cusgrfilem3 29434 padct 32696 f1ocnt 32777 volmeas 34239 eulerpart 34390 derangenlem 35203 mblfinlem1 37696 sticksstones4 42181 sticksstones20 42198 eldioph2lem1 42792 isnumbasgrplem1 43133 nnf1oxpnn 45231 sprsymrelen 47530 prproropen 47538 uspgrspren 48182 uspgrbisymrel 48184 1aryenef 48676 2aryenef 48687 rrx2xpreen 48750 |
| Copyright terms: Public domain | W3C validator |