| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bren | Structured version Visualization version GIF version | ||
| Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) Extract breng 8930 as an intermediate result. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| bren | ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 8929 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 2 | f1ofn 6804 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 Fn 𝐴) | |
| 3 | fndm 6624 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
| 4 | vex 3454 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
| 5 | 4 | dmex 7888 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
| 6 | 3, 5 | eqeltrrdi 2838 | . . . . 5 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) |
| 7 | 2, 6 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐴 ∈ V) |
| 8 | f1ofo 6810 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
| 9 | forn 6778 | . . . . . 6 ⊢ (𝑓:𝐴–onto→𝐵 → ran 𝑓 = 𝐵) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ran 𝑓 = 𝐵) |
| 11 | 4 | rnex 7889 | . . . . 5 ⊢ ran 𝑓 ∈ V |
| 12 | 10, 11 | eqeltrrdi 2838 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V) |
| 13 | 7, 12 | jca 511 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 14 | 13 | exlimiv 1930 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 15 | breng 8930 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |
| 16 | 1, 14, 15 | pm5.21nii 378 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 dom cdm 5641 ran crn 5642 Fn wfn 6509 –onto→wfo 6512 –1-1-onto→wf1o 6513 ≈ cen 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-en 8922 |
| This theorem is referenced by: domen 8936 f1oen3g 8941 ener 8975 en0ALT 8993 unen 9020 enfixsn 9055 canth2 9100 mapen 9111 ssenen 9121 rexdif1enOLD 9129 dif1en 9130 dif1enOLD 9132 ssfiALT 9144 ensymfib 9154 entrfil 9155 phplem2 9175 php3 9179 isinf 9214 isinfOLD 9215 domunfican 9279 fiint 9284 fiintOLD 9285 mapfien2 9367 unxpwdom2 9548 isinffi 9952 infxpenc2 9982 fseqen 9987 dfac8b 9991 infpwfien 10022 dfac12r 10107 infmap2 10177 cff1 10218 infpssr 10268 fin4en1 10269 enfin2i 10281 enfin1ai 10344 axcc3 10398 axcclem 10417 numth 10432 ttukey2g 10476 canthnum 10609 canthwe 10611 canthp1 10614 pwfseq 10624 tskuni 10743 gruen 10772 hasheqf1o 14321 hashfacen 14426 fz1f1o 15683 ruc 16218 cnso 16222 eulerth 16760 ablfaclem3 20026 lbslcic 21757 uvcendim 21763 indishmph 23692 ufldom 23856 ovolctb 25398 ovoliunlem3 25412 iunmbl2 25465 dyadmbl 25508 vitali 25521 cusgrfilem3 29392 padct 32650 f1ocnt 32732 volmeas 34228 eulerpart 34380 derangenlem 35165 mblfinlem1 37658 sticksstones4 42144 sticksstones20 42161 eldioph2lem1 42755 isnumbasgrplem1 43097 nnf1oxpnn 45196 sprsymrelen 47505 prproropen 47513 uspgrspren 48144 uspgrbisymrel 48146 1aryenef 48638 2aryenef 48649 rrx2xpreen 48712 |
| Copyright terms: Public domain | W3C validator |