| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bren | Structured version Visualization version GIF version | ||
| Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) Extract breng 8888 as an intermediate result. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| bren | ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 8887 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 2 | f1ofn 6769 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 Fn 𝐴) | |
| 3 | fndm 6589 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
| 4 | vex 3442 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
| 5 | 4 | dmex 7849 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
| 6 | 3, 5 | eqeltrrdi 2837 | . . . . 5 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) |
| 7 | 2, 6 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐴 ∈ V) |
| 8 | f1ofo 6775 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
| 9 | forn 6743 | . . . . . 6 ⊢ (𝑓:𝐴–onto→𝐵 → ran 𝑓 = 𝐵) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ran 𝑓 = 𝐵) |
| 11 | 4 | rnex 7850 | . . . . 5 ⊢ ran 𝑓 ∈ V |
| 12 | 10, 11 | eqeltrrdi 2837 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V) |
| 13 | 7, 12 | jca 511 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 14 | 13 | exlimiv 1930 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 15 | breng 8888 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |
| 16 | 1, 14, 15 | pm5.21nii 378 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3438 class class class wbr 5095 dom cdm 5623 ran crn 5624 Fn wfn 6481 –onto→wfo 6484 –1-1-onto→wf1o 6485 ≈ cen 8876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-en 8880 |
| This theorem is referenced by: domen 8894 f1oen3g 8899 ener 8933 en0ALT 8951 unen 8978 enfixsn 9010 canth2 9054 mapen 9065 ssenen 9075 rexdif1enOLD 9083 dif1en 9084 dif1enOLD 9086 ssfiALT 9098 ensymfib 9108 entrfil 9109 phplem2 9129 php3 9133 isinf 9165 isinfOLD 9166 domunfican 9230 fiint 9235 fiintOLD 9236 mapfien2 9318 unxpwdom2 9499 isinffi 9907 infxpenc2 9935 fseqen 9940 dfac8b 9944 infpwfien 9975 dfac12r 10060 infmap2 10130 cff1 10171 infpssr 10221 fin4en1 10222 enfin2i 10234 enfin1ai 10297 axcc3 10351 axcclem 10370 numth 10385 ttukey2g 10429 canthnum 10562 canthwe 10564 canthp1 10567 pwfseq 10577 tskuni 10696 gruen 10725 hasheqf1o 14274 hashfacen 14379 fz1f1o 15635 ruc 16170 cnso 16174 eulerth 16712 ablfaclem3 19986 lbslcic 21766 uvcendim 21772 indishmph 23701 ufldom 23865 ovolctb 25407 ovoliunlem3 25421 iunmbl2 25474 dyadmbl 25517 vitali 25530 cusgrfilem3 29421 padct 32676 f1ocnt 32758 volmeas 34197 eulerpart 34349 derangenlem 35143 mblfinlem1 37636 sticksstones4 42122 sticksstones20 42139 eldioph2lem1 42733 isnumbasgrplem1 43074 nnf1oxpnn 45173 sprsymrelen 47485 prproropen 47493 uspgrspren 48137 uspgrbisymrel 48139 1aryenef 48631 2aryenef 48642 rrx2xpreen 48705 |
| Copyright terms: Public domain | W3C validator |