Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bren | Structured version Visualization version GIF version |
Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) (Proof shortened by BTernaryTau, 23-Sep-2024.) |
Ref | Expression |
---|---|
bren | ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 8699 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
2 | f1ofn 6701 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 Fn 𝐴) | |
3 | fndm 6520 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
4 | vex 3426 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
5 | 4 | dmex 7732 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
6 | 3, 5 | eqeltrrdi 2848 | . . . . 5 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) |
7 | 2, 6 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐴 ∈ V) |
8 | f1ofo 6707 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
9 | forn 6675 | . . . . . 6 ⊢ (𝑓:𝐴–onto→𝐵 → ran 𝑓 = 𝐵) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ran 𝑓 = 𝐵) |
11 | 4 | rnex 7733 | . . . . 5 ⊢ ran 𝑓 ∈ V |
12 | 10, 11 | eqeltrrdi 2848 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V) |
13 | 7, 12 | jca 511 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
14 | 13 | exlimiv 1934 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
15 | breng 8700 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |
16 | 1, 14, 15 | pm5.21nii 379 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 dom cdm 5580 ran crn 5581 Fn wfn 6413 –onto→wfo 6416 –1-1-onto→wf1o 6417 ≈ cen 8688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-en 8692 |
This theorem is referenced by: domen 8706 f1oen3g 8709 ener 8742 en0OLD 8759 en0ALT 8760 ensn1OLD 8762 en1OLD 8766 en2snOLD 8786 unen 8790 enfixsn 8821 canth2 8866 mapen 8877 ssenen 8887 phplem4 8895 php3 8899 rexdif1en 8906 dif1en 8907 ssfiALT 8919 ensymfib 8930 entrfil 8931 isinf 8965 domunfican 9017 fiint 9021 mapfien2 9098 unxpwdom2 9277 isinffi 9681 infxpenc2 9709 fseqen 9714 dfac8b 9718 infpwfien 9749 dfac12r 9833 infmap2 9905 cff1 9945 infpssr 9995 fin4en1 9996 enfin2i 10008 enfin1ai 10071 axcc3 10125 axcclem 10144 numth 10159 ttukey2g 10203 canthnum 10336 canthwe 10338 canthp1 10341 pwfseq 10351 tskuni 10470 gruen 10499 hasheqf1o 13991 hashfacen 14094 hashfacenOLD 14095 fz1f1o 15350 ruc 15880 cnso 15884 eulerth 16412 ablfaclem3 19605 lbslcic 20958 uvcendim 20964 indishmph 22857 ufldom 23021 ovolctb 24559 ovoliunlem3 24573 iunmbl2 24626 dyadmbl 24669 vitali 24682 cusgrfilem3 27727 padct 30956 f1ocnt 31025 volmeas 32099 eulerpart 32249 derangenlem 33033 mblfinlem1 35741 sticksstones4 40033 sticksstones20 40050 eldioph2lem1 40498 isnumbasgrplem1 40842 nnf1oxpnn 42623 sprsymrelen 44840 prproropen 44848 uspgrspren 45202 uspgrbisymrel 45204 1aryenef 45879 2aryenef 45890 rrx2xpreen 45953 |
Copyright terms: Public domain | W3C validator |