Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bren | Structured version Visualization version GIF version |
Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) |
Ref | Expression |
---|---|
bren | ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 8565 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
2 | f1ofn 6621 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 Fn 𝐴) | |
3 | fndm 6440 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
4 | vex 3402 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
5 | 4 | dmex 7644 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
6 | 3, 5 | eqeltrrdi 2842 | . . . . 5 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) |
7 | 2, 6 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐴 ∈ V) |
8 | f1ofo 6627 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
9 | forn 6595 | . . . . . 6 ⊢ (𝑓:𝐴–onto→𝐵 → ran 𝑓 = 𝐵) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ran 𝑓 = 𝐵) |
11 | 4 | rnex 7645 | . . . . 5 ⊢ ran 𝑓 ∈ V |
12 | 10, 11 | eqeltrrdi 2842 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V) |
13 | 7, 12 | jca 515 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
14 | 13 | exlimiv 1937 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
15 | f1oeq2 6609 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–1-1-onto→𝑦 ↔ 𝑓:𝐴–1-1-onto→𝑦)) | |
16 | 15 | exbidv 1928 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥–1-1-onto→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝑦)) |
17 | f1oeq3 6610 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑓:𝐴–1-1-onto→𝑦 ↔ 𝑓:𝐴–1-1-onto→𝐵)) | |
18 | 17 | exbidv 1928 | . . 3 ⊢ (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴–1-1-onto→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
19 | df-en 8558 | . . 3 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
20 | 16, 18, 19 | brabg 5394 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
21 | 1, 14, 20 | pm5.21nii 383 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1542 ∃wex 1786 ∈ wcel 2114 Vcvv 3398 class class class wbr 5030 dom cdm 5525 ran crn 5526 Fn wfn 6334 –onto→wfo 6337 –1-1-onto→wf1o 6338 ≈ cen 8554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-un 7481 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-xp 5531 df-rel 5532 df-cnv 5533 df-dm 5535 df-rn 5536 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-en 8558 |
This theorem is referenced by: domen 8570 f1oen3g 8573 ener 8604 en0 8620 en0OLD 8621 ensn1 8622 en1 8625 en2sn 8642 unen 8646 enfixsn 8677 canth2 8722 mapen 8733 ssenen 8743 phplem4 8751 php3 8755 rexdif1en 8762 dif1en 8763 ensymfib 8784 entrfil 8785 isinf 8812 ssfiOLD 8818 domunfican 8867 fiint 8871 mapfien2 8948 unxpwdom2 9127 isinffi 9496 infxpenc2 9524 fseqen 9529 dfac8b 9533 infpwfien 9564 dfac12r 9648 infmap2 9720 cff1 9760 infpssr 9810 fin4en1 9811 enfin2i 9823 enfin1ai 9886 axcc3 9940 axcclem 9959 numth 9974 ttukey2g 10018 canthnum 10151 canthwe 10153 canthp1 10156 pwfseq 10166 tskuni 10285 gruen 10314 hasheqf1o 13803 hashfacen 13906 hashfacenOLD 13907 fz1f1o 15162 ruc 15690 cnso 15694 eulerth 16222 ablfaclem3 19330 lbslcic 20659 uvcendim 20665 indishmph 22551 ufldom 22715 ovolctb 24244 ovoliunlem3 24258 iunmbl2 24311 dyadmbl 24354 vitali 24367 cusgrfilem3 27401 padct 30631 f1ocnt 30700 volmeas 31771 eulerpart 31921 derangenlem 32706 mblfinlem1 35459 sticksstones4 39733 eldioph2lem1 40176 isnumbasgrplem1 40520 nnf1oxpnn 42294 sprsymrelen 44515 prproropen 44523 uspgrspren 44877 uspgrbisymrel 44879 1aryenef 45554 2aryenef 45565 rrx2xpreen 45628 |
Copyright terms: Public domain | W3C validator |