| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bren | Structured version Visualization version GIF version | ||
| Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) Extract breng 8968 as an intermediate result. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| bren | ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 8967 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 2 | f1ofn 6819 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 Fn 𝐴) | |
| 3 | fndm 6641 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
| 4 | vex 3463 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
| 5 | 4 | dmex 7905 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
| 6 | 3, 5 | eqeltrrdi 2843 | . . . . 5 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) |
| 7 | 2, 6 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐴 ∈ V) |
| 8 | f1ofo 6825 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
| 9 | forn 6793 | . . . . . 6 ⊢ (𝑓:𝐴–onto→𝐵 → ran 𝑓 = 𝐵) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ran 𝑓 = 𝐵) |
| 11 | 4 | rnex 7906 | . . . . 5 ⊢ ran 𝑓 ∈ V |
| 12 | 10, 11 | eqeltrrdi 2843 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V) |
| 13 | 7, 12 | jca 511 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 14 | 13 | exlimiv 1930 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 15 | breng 8968 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |
| 16 | 1, 14, 15 | pm5.21nii 378 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 dom cdm 5654 ran crn 5655 Fn wfn 6526 –onto→wfo 6529 –1-1-onto→wf1o 6530 ≈ cen 8956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-en 8960 |
| This theorem is referenced by: domen 8976 f1oen3g 8981 ener 9015 en0ALT 9033 unen 9060 enfixsn 9095 canth2 9144 mapen 9155 ssenen 9165 rexdif1enOLD 9173 dif1en 9174 dif1enOLD 9176 ssfiALT 9188 ensymfib 9198 entrfil 9199 phplem2 9219 php3 9223 php3OLD 9233 isinf 9268 isinfOLD 9269 domunfican 9333 fiint 9338 fiintOLD 9339 mapfien2 9421 unxpwdom2 9602 isinffi 10006 infxpenc2 10036 fseqen 10041 dfac8b 10045 infpwfien 10076 dfac12r 10161 infmap2 10231 cff1 10272 infpssr 10322 fin4en1 10323 enfin2i 10335 enfin1ai 10398 axcc3 10452 axcclem 10471 numth 10486 ttukey2g 10530 canthnum 10663 canthwe 10665 canthp1 10668 pwfseq 10678 tskuni 10797 gruen 10826 hasheqf1o 14367 hashfacen 14472 fz1f1o 15726 ruc 16261 cnso 16265 eulerth 16802 ablfaclem3 20070 lbslcic 21801 uvcendim 21807 indishmph 23736 ufldom 23900 ovolctb 25443 ovoliunlem3 25457 iunmbl2 25510 dyadmbl 25553 vitali 25566 cusgrfilem3 29437 padct 32697 f1ocnt 32779 volmeas 34262 eulerpart 34414 derangenlem 35193 mblfinlem1 37681 sticksstones4 42162 sticksstones20 42179 eldioph2lem1 42783 isnumbasgrplem1 43125 nnf1oxpnn 45219 sprsymrelen 47514 prproropen 47522 uspgrspren 48127 uspgrbisymrel 48129 1aryenef 48625 2aryenef 48636 rrx2xpreen 48699 |
| Copyright terms: Public domain | W3C validator |