| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bren | Structured version Visualization version GIF version | ||
| Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) Extract breng 8976 as an intermediate result. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| bren | ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 8975 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 2 | f1ofn 6829 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 Fn 𝐴) | |
| 3 | fndm 6651 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
| 4 | vex 3467 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
| 5 | 4 | dmex 7913 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
| 6 | 3, 5 | eqeltrrdi 2842 | . . . . 5 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) |
| 7 | 2, 6 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐴 ∈ V) |
| 8 | f1ofo 6835 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
| 9 | forn 6803 | . . . . . 6 ⊢ (𝑓:𝐴–onto→𝐵 → ran 𝑓 = 𝐵) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ran 𝑓 = 𝐵) |
| 11 | 4 | rnex 7914 | . . . . 5 ⊢ ran 𝑓 ∈ V |
| 12 | 10, 11 | eqeltrrdi 2842 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V) |
| 13 | 7, 12 | jca 511 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 14 | 13 | exlimiv 1929 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 15 | breng 8976 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |
| 16 | 1, 14, 15 | pm5.21nii 378 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 Vcvv 3463 class class class wbr 5123 dom cdm 5665 ran crn 5666 Fn wfn 6536 –onto→wfo 6539 –1-1-onto→wf1o 6540 ≈ cen 8964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-dm 5675 df-rn 5676 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-en 8968 |
| This theorem is referenced by: domen 8984 f1oen3g 8989 ener 9023 en0ALT 9041 unen 9068 enfixsn 9103 canth2 9152 mapen 9163 ssenen 9173 rexdif1enOLD 9181 dif1en 9182 dif1enOLD 9184 ssfiALT 9196 ensymfib 9206 entrfil 9207 phplem2 9227 php3 9231 phplem4OLD 9239 php3OLD 9243 isinf 9278 isinfOLD 9279 domunfican 9343 fiint 9348 fiintOLD 9349 mapfien2 9431 unxpwdom2 9610 isinffi 10014 infxpenc2 10044 fseqen 10049 dfac8b 10053 infpwfien 10084 dfac12r 10169 infmap2 10239 cff1 10280 infpssr 10330 fin4en1 10331 enfin2i 10343 enfin1ai 10406 axcc3 10460 axcclem 10479 numth 10494 ttukey2g 10538 canthnum 10671 canthwe 10673 canthp1 10676 pwfseq 10686 tskuni 10805 gruen 10834 hasheqf1o 14371 hashfacen 14476 fz1f1o 15729 ruc 16262 cnso 16266 eulerth 16803 ablfaclem3 20076 lbslcic 21816 uvcendim 21822 indishmph 23753 ufldom 23917 ovolctb 25462 ovoliunlem3 25476 iunmbl2 25529 dyadmbl 25572 vitali 25585 cusgrfilem3 29404 padct 32667 f1ocnt 32748 volmeas 34207 eulerpart 34359 derangenlem 35151 mblfinlem1 37639 sticksstones4 42125 sticksstones20 42142 eldioph2lem1 42749 isnumbasgrplem1 43091 nnf1oxpnn 45172 sprsymrelen 47460 prproropen 47468 uspgrspren 48041 uspgrbisymrel 48043 1aryenef 48539 2aryenef 48550 rrx2xpreen 48613 |
| Copyright terms: Public domain | W3C validator |