![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bren | Structured version Visualization version GIF version |
Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) Extract breng 9012 as an intermediate result. (Revised by BTernaryTau, 23-Sep-2024.) |
Ref | Expression |
---|---|
bren | ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 9011 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
2 | f1ofn 6863 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 Fn 𝐴) | |
3 | fndm 6682 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
4 | vex 3492 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
5 | 4 | dmex 7949 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
6 | 3, 5 | eqeltrrdi 2853 | . . . . 5 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) |
7 | 2, 6 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐴 ∈ V) |
8 | f1ofo 6869 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
9 | forn 6837 | . . . . . 6 ⊢ (𝑓:𝐴–onto→𝐵 → ran 𝑓 = 𝐵) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ran 𝑓 = 𝐵) |
11 | 4 | rnex 7950 | . . . . 5 ⊢ ran 𝑓 ∈ V |
12 | 10, 11 | eqeltrrdi 2853 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V) |
13 | 7, 12 | jca 511 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
14 | 13 | exlimiv 1929 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
15 | breng 9012 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |
16 | 1, 14, 15 | pm5.21nii 378 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 dom cdm 5700 ran crn 5701 Fn wfn 6568 –onto→wfo 6571 –1-1-onto→wf1o 6572 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-en 9004 |
This theorem is referenced by: domen 9021 f1oen3g 9026 ener 9061 en0OLD 9079 en0ALT 9080 ensn1OLD 9083 en1OLD 9087 en2snOLD 9107 unen 9112 enfixsn 9147 canth2 9196 mapen 9207 ssenen 9217 rexdif1enOLD 9225 dif1en 9226 dif1enOLD 9228 ssfiALT 9241 ensymfib 9250 entrfil 9251 phplem2 9271 php3 9275 phplem4OLD 9283 php3OLD 9287 isinf 9323 isinfOLD 9324 domunfican 9389 fiint 9394 fiintOLD 9395 mapfien2 9478 unxpwdom2 9657 isinffi 10061 infxpenc2 10091 fseqen 10096 dfac8b 10100 infpwfien 10131 dfac12r 10216 infmap2 10286 cff1 10327 infpssr 10377 fin4en1 10378 enfin2i 10390 enfin1ai 10453 axcc3 10507 axcclem 10526 numth 10541 ttukey2g 10585 canthnum 10718 canthwe 10720 canthp1 10723 pwfseq 10733 tskuni 10852 gruen 10881 hasheqf1o 14398 hashfacen 14503 fz1f1o 15758 ruc 16291 cnso 16295 eulerth 16830 ablfaclem3 20131 lbslcic 21884 uvcendim 21890 indishmph 23827 ufldom 23991 ovolctb 25544 ovoliunlem3 25558 iunmbl2 25611 dyadmbl 25654 vitali 25667 cusgrfilem3 29493 padct 32733 f1ocnt 32807 volmeas 34195 eulerpart 34347 derangenlem 35139 mblfinlem1 37617 sticksstones4 42106 sticksstones20 42123 eldioph2lem1 42716 isnumbasgrplem1 43058 nnf1oxpnn 45102 sprsymrelen 47374 prproropen 47382 uspgrspren 47875 uspgrbisymrel 47877 1aryenef 48379 2aryenef 48390 rrx2xpreen 48453 |
Copyright terms: Public domain | W3C validator |