![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bren | Structured version Visualization version GIF version |
Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) Extract breng 8954 as an intermediate result. (Revised by BTernaryTau, 23-Sep-2024.) |
Ref | Expression |
---|---|
bren | ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 8953 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
2 | f1ofn 6834 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 Fn 𝐴) | |
3 | fndm 6652 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
4 | vex 3477 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
5 | 4 | dmex 7906 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
6 | 3, 5 | eqeltrrdi 2841 | . . . . 5 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) |
7 | 2, 6 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐴 ∈ V) |
8 | f1ofo 6840 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
9 | forn 6808 | . . . . . 6 ⊢ (𝑓:𝐴–onto→𝐵 → ran 𝑓 = 𝐵) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ran 𝑓 = 𝐵) |
11 | 4 | rnex 7907 | . . . . 5 ⊢ ran 𝑓 ∈ V |
12 | 10, 11 | eqeltrrdi 2841 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V) |
13 | 7, 12 | jca 511 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
14 | 13 | exlimiv 1932 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
15 | breng 8954 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |
16 | 1, 14, 15 | pm5.21nii 378 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1540 ∃wex 1780 ∈ wcel 2105 Vcvv 3473 class class class wbr 5148 dom cdm 5676 ran crn 5677 Fn wfn 6538 –onto→wfo 6541 –1-1-onto→wf1o 6542 ≈ cen 8942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-en 8946 |
This theorem is referenced by: domen 8963 f1oen3g 8968 ener 9003 en0OLD 9020 en0ALT 9021 ensn1OLD 9024 en1OLD 9028 en2snOLD 9048 unen 9052 enfixsn 9087 canth2 9136 mapen 9147 ssenen 9157 rexdif1enOLD 9165 dif1en 9166 dif1enOLD 9168 ssfiALT 9180 ensymfib 9193 entrfil 9194 phplem2 9214 php3 9218 phplem4OLD 9226 php3OLD 9230 isinf 9266 isinfOLD 9267 domunfican 9326 fiint 9330 mapfien2 9410 unxpwdom2 9589 isinffi 9993 infxpenc2 10023 fseqen 10028 dfac8b 10032 infpwfien 10063 dfac12r 10147 infmap2 10219 cff1 10259 infpssr 10309 fin4en1 10310 enfin2i 10322 enfin1ai 10385 axcc3 10439 axcclem 10458 numth 10473 ttukey2g 10517 canthnum 10650 canthwe 10652 canthp1 10655 pwfseq 10665 tskuni 10784 gruen 10813 hasheqf1o 14316 hashfacen 14420 hashfacenOLD 14421 fz1f1o 15663 ruc 16193 cnso 16197 eulerth 16723 ablfaclem3 20005 lbslcic 21707 uvcendim 21713 indishmph 23623 ufldom 23787 ovolctb 25340 ovoliunlem3 25354 iunmbl2 25407 dyadmbl 25450 vitali 25463 cusgrfilem3 29149 padct 32379 f1ocnt 32448 volmeas 33695 eulerpart 33847 derangenlem 34628 mblfinlem1 36992 sticksstones4 41435 sticksstones20 41452 eldioph2lem1 41964 isnumbasgrplem1 42309 nnf1oxpnn 44356 sprsymrelen 46630 prproropen 46638 uspgrspren 46992 uspgrbisymrel 46994 1aryenef 47496 2aryenef 47507 rrx2xpreen 47570 |
Copyright terms: Public domain | W3C validator |