MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brenOLD Structured version   Visualization version   GIF version

Theorem brenOLD 8946
Description: Obsolete version of bren 8945 as of 23-Sep-2024. (Contributed by NM, 15-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
brenOLD (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem brenOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 encv 8943 . 2 (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
2 f1ofn 6831 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓 Fn 𝐴)
3 fndm 6649 . . . . . 6 (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴)
4 vex 3478 . . . . . . 7 𝑓 ∈ V
54dmex 7898 . . . . . 6 dom 𝑓 ∈ V
63, 5eqeltrrdi 2842 . . . . 5 (𝑓 Fn 𝐴𝐴 ∈ V)
72, 6syl 17 . . . 4 (𝑓:𝐴1-1-onto𝐵𝐴 ∈ V)
8 f1ofo 6837 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
9 forn 6805 . . . . . 6 (𝑓:𝐴onto𝐵 → ran 𝑓 = 𝐵)
108, 9syl 17 . . . . 5 (𝑓:𝐴1-1-onto𝐵 → ran 𝑓 = 𝐵)
114rnex 7899 . . . . 5 ran 𝑓 ∈ V
1210, 11eqeltrrdi 2842 . . . 4 (𝑓:𝐴1-1-onto𝐵𝐵 ∈ V)
137, 12jca 512 . . 3 (𝑓:𝐴1-1-onto𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1413exlimiv 1933 . 2 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
15 f1oeq2 6819 . . . 4 (𝑥 = 𝐴 → (𝑓:𝑥1-1-onto𝑦𝑓:𝐴1-1-onto𝑦))
1615exbidv 1924 . . 3 (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥1-1-onto𝑦 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑦))
17 f1oeq3 6820 . . . 4 (𝑦 = 𝐵 → (𝑓:𝐴1-1-onto𝑦𝑓:𝐴1-1-onto𝐵))
1817exbidv 1924 . . 3 (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴1-1-onto𝑦 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
19 df-en 8936 . . 3 ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
2016, 18, 19brabg 5538 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
211, 14, 20pm5.21nii 379 1 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  Vcvv 3474   class class class wbr 5147  dom cdm 5675  ran crn 5676   Fn wfn 6535  ontowfo 6538  1-1-ontowf1o 6539  cen 8932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-dm 5685  df-rn 5686  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-en 8936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator