MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brenOLD Structured version   Visualization version   GIF version

Theorem brenOLD 8792
Description: Obsolete version of bren 8791 as of 23-Sep-2024. (Contributed by NM, 15-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
brenOLD (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem brenOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 encv 8789 . 2 (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
2 f1ofn 6754 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓 Fn 𝐴)
3 fndm 6574 . . . . . 6 (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴)
4 vex 3445 . . . . . . 7 𝑓 ∈ V
54dmex 7803 . . . . . 6 dom 𝑓 ∈ V
63, 5eqeltrrdi 2847 . . . . 5 (𝑓 Fn 𝐴𝐴 ∈ V)
72, 6syl 17 . . . 4 (𝑓:𝐴1-1-onto𝐵𝐴 ∈ V)
8 f1ofo 6760 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
9 forn 6728 . . . . . 6 (𝑓:𝐴onto𝐵 → ran 𝑓 = 𝐵)
108, 9syl 17 . . . . 5 (𝑓:𝐴1-1-onto𝐵 → ran 𝑓 = 𝐵)
114rnex 7804 . . . . 5 ran 𝑓 ∈ V
1210, 11eqeltrrdi 2847 . . . 4 (𝑓:𝐴1-1-onto𝐵𝐵 ∈ V)
137, 12jca 512 . . 3 (𝑓:𝐴1-1-onto𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1413exlimiv 1932 . 2 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
15 f1oeq2 6742 . . . 4 (𝑥 = 𝐴 → (𝑓:𝑥1-1-onto𝑦𝑓:𝐴1-1-onto𝑦))
1615exbidv 1923 . . 3 (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥1-1-onto𝑦 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑦))
17 f1oeq3 6743 . . . 4 (𝑦 = 𝐵 → (𝑓:𝐴1-1-onto𝑦𝑓:𝐴1-1-onto𝐵))
1817exbidv 1923 . . 3 (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴1-1-onto𝑦 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
19 df-en 8782 . . 3 ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
2016, 18, 19brabg 5472 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
211, 14, 20pm5.21nii 379 1 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1540  wex 1780  wcel 2105  Vcvv 3441   class class class wbr 5087  dom cdm 5607  ran crn 5608   Fn wfn 6460  ontowfo 6463  1-1-ontowf1o 6464  cen 8778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367  ax-un 7628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-xp 5613  df-rel 5614  df-cnv 5615  df-dm 5617  df-rn 5618  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-en 8782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator