| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breng | Structured version Visualization version GIF version | ||
| Description: Equinumerosity relation. This variation of bren 8905 does not require the Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a subproof of bren 8905. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| breng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq2 6771 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–1-1-onto→𝑦 ↔ 𝑓:𝐴–1-1-onto→𝑦)) | |
| 2 | 1 | exbidv 1921 | . 2 ⊢ (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥–1-1-onto→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝑦)) |
| 3 | f1oeq3 6772 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑓:𝐴–1-1-onto→𝑦 ↔ 𝑓:𝐴–1-1-onto→𝐵)) | |
| 4 | 3 | exbidv 1921 | . 2 ⊢ (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴–1-1-onto→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
| 5 | df-en 8896 | . 2 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
| 6 | 2, 4, 5 | brabg 5494 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 class class class wbr 5102 –1-1-onto→wf1o 6498 ≈ cen 8892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-en 8896 |
| This theorem is referenced by: bren 8905 f1oen4g 8913 en0 8966 en0r 8968 ensn1 8969 en1 8972 en2sn 8989 en2prd 8996 rexdif1en 9099 snnen2o 9161 1sdom2dom 9170 clnbgr3stgrgrlic 48004 |
| Copyright terms: Public domain | W3C validator |