MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breng Structured version   Visualization version   GIF version

Theorem breng 8773
Description: Equinumerosity relation. This variation of bren 8774 does not require the Axiom of Union. (Contributed by BTernaryTau, 23-Sep-2024.)
Assertion
Ref Expression
breng ((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem breng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oeq2 6735 . . 3 (𝑥 = 𝐴 → (𝑓:𝑥1-1-onto𝑦𝑓:𝐴1-1-onto𝑦))
21exbidv 1922 . 2 (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥1-1-onto𝑦 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑦))
3 f1oeq3 6736 . . 3 (𝑦 = 𝐵 → (𝑓:𝐴1-1-onto𝑦𝑓:𝐴1-1-onto𝐵))
43exbidv 1922 . 2 (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴1-1-onto𝑦 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
5 df-en 8765 . 2 ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
62, 4, 5brabg 5465 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wex 1779  wcel 2104   class class class wbr 5081  1-1-ontowf1o 6457  cen 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-en 8765
This theorem is referenced by:  bren  8774  f1oen4g  8785  en0  8838  en0r  8841  ensn1  8842  en1  8846  en2sn  8866  en2prd  8873  snnen2o  9058  1sdom2dom  9068
  Copyright terms: Public domain W3C validator