Detailed syntax breakdown of Definition df-enr
| Step | Hyp | Ref
| Expression |
| 1 | | cer 10904 |
. 2
class
~R |
| 2 | | vx |
. . . . . . 7
setvar 𝑥 |
| 3 | 2 | cv 1539 |
. . . . . 6
class 𝑥 |
| 4 | | cnp 10899 |
. . . . . . 7
class
P |
| 5 | 4, 4 | cxp 5683 |
. . . . . 6
class
(P × P) |
| 6 | 3, 5 | wcel 2108 |
. . . . 5
wff 𝑥 ∈ (P ×
P) |
| 7 | | vy |
. . . . . . 7
setvar 𝑦 |
| 8 | 7 | cv 1539 |
. . . . . 6
class 𝑦 |
| 9 | 8, 5 | wcel 2108 |
. . . . 5
wff 𝑦 ∈ (P ×
P) |
| 10 | 6, 9 | wa 395 |
. . . 4
wff (𝑥 ∈ (P ×
P) ∧ 𝑦
∈ (P × P)) |
| 11 | | vz |
. . . . . . . . . . . . 13
setvar 𝑧 |
| 12 | 11 | cv 1539 |
. . . . . . . . . . . 12
class 𝑧 |
| 13 | | vw |
. . . . . . . . . . . . 13
setvar 𝑤 |
| 14 | 13 | cv 1539 |
. . . . . . . . . . . 12
class 𝑤 |
| 15 | 12, 14 | cop 4632 |
. . . . . . . . . . 11
class
〈𝑧, 𝑤〉 |
| 16 | 3, 15 | wceq 1540 |
. . . . . . . . . 10
wff 𝑥 = 〈𝑧, 𝑤〉 |
| 17 | | vv |
. . . . . . . . . . . . 13
setvar 𝑣 |
| 18 | 17 | cv 1539 |
. . . . . . . . . . . 12
class 𝑣 |
| 19 | | vu |
. . . . . . . . . . . . 13
setvar 𝑢 |
| 20 | 19 | cv 1539 |
. . . . . . . . . . . 12
class 𝑢 |
| 21 | 18, 20 | cop 4632 |
. . . . . . . . . . 11
class
〈𝑣, 𝑢〉 |
| 22 | 8, 21 | wceq 1540 |
. . . . . . . . . 10
wff 𝑦 = 〈𝑣, 𝑢〉 |
| 23 | 16, 22 | wa 395 |
. . . . . . . . 9
wff (𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) |
| 24 | | cpp 10901 |
. . . . . . . . . . 11
class
+P |
| 25 | 12, 20, 24 | co 7431 |
. . . . . . . . . 10
class (𝑧 +P
𝑢) |
| 26 | 14, 18, 24 | co 7431 |
. . . . . . . . . 10
class (𝑤 +P
𝑣) |
| 27 | 25, 26 | wceq 1540 |
. . . . . . . . 9
wff (𝑧 +P
𝑢) = (𝑤 +P 𝑣) |
| 28 | 23, 27 | wa 395 |
. . . . . . . 8
wff ((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)) |
| 29 | 28, 19 | wex 1779 |
. . . . . . 7
wff
∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)) |
| 30 | 29, 17 | wex 1779 |
. . . . . 6
wff
∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)) |
| 31 | 30, 13 | wex 1779 |
. . . . 5
wff
∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)) |
| 32 | 31, 11 | wex 1779 |
. . . 4
wff
∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)) |
| 33 | 10, 32 | wa 395 |
. . 3
wff ((𝑥 ∈ (P ×
P) ∧ 𝑦
∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣))) |
| 34 | 33, 2, 7 | copab 5205 |
. 2
class
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P ×
P) ∧ 𝑦
∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} |
| 35 | 1, 34 | wceq 1540 |
1
wff
~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P ×
P) ∧ 𝑦
∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} |