MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prsrlem1 Structured version   Visualization version   GIF version

Theorem prsrlem1 10347
Description: Decomposing signed reals into positive reals. Lemma for addsrpr 10350 and mulsrpr 10351. (Contributed by Jim Kingdon, 30-Dec-2019.)
Assertion
Ref Expression
prsrlem1 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔))))
Distinct variable group:   𝑓,𝑔,,𝑠,𝑡,𝑢,𝑣,𝑤
Allowed substitution hints:   𝐴(𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠)   𝐵(𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠)

Proof of Theorem prsrlem1
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrer 10338 . . . . . 6 ~R Er (P × P)
2 erdm 8156 . . . . . 6 ( ~R Er (P × P) → dom ~R = (P × P))
31, 2ax-mp 5 . . . . 5 dom ~R = (P × P)
4 simprll 775 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → 𝐴 = [⟨𝑤, 𝑣⟩] ~R )
5 simpll 763 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → 𝐴 ∈ ((P × P) / ~R ))
64, 5eqeltrrd 2886 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨𝑤, 𝑣⟩] ~R ∈ ((P × P) / ~R ))
7 ecelqsdm 8224 . . . . 5 ((dom ~R = (P × P) ∧ [⟨𝑤, 𝑣⟩] ~R ∈ ((P × P) / ~R )) → ⟨𝑤, 𝑣⟩ ∈ (P × P))
83, 6, 7sylancr 587 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨𝑤, 𝑣⟩ ∈ (P × P))
9 opelxp 5486 . . . 4 (⟨𝑤, 𝑣⟩ ∈ (P × P) ↔ (𝑤P𝑣P))
108, 9sylib 219 . . 3 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (𝑤P𝑣P))
11 simprrl 777 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → 𝐴 = [⟨𝑠, 𝑓⟩] ~R )
1211, 5eqeltrrd 2886 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨𝑠, 𝑓⟩] ~R ∈ ((P × P) / ~R ))
13 ecelqsdm 8224 . . . . 5 ((dom ~R = (P × P) ∧ [⟨𝑠, 𝑓⟩] ~R ∈ ((P × P) / ~R )) → ⟨𝑠, 𝑓⟩ ∈ (P × P))
143, 12, 13sylancr 587 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨𝑠, 𝑓⟩ ∈ (P × P))
15 opelxp 5486 . . . 4 (⟨𝑠, 𝑓⟩ ∈ (P × P) ↔ (𝑠P𝑓P))
1614, 15sylib 219 . . 3 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (𝑠P𝑓P))
1710, 16jca 512 . 2 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((𝑤P𝑣P) ∧ (𝑠P𝑓P)))
18 simprlr 776 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → 𝐵 = [⟨𝑢, 𝑡⟩] ~R )
19 simplr 765 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → 𝐵 ∈ ((P × P) / ~R ))
2018, 19eqeltrrd 2886 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨𝑢, 𝑡⟩] ~R ∈ ((P × P) / ~R ))
21 ecelqsdm 8224 . . . . 5 ((dom ~R = (P × P) ∧ [⟨𝑢, 𝑡⟩] ~R ∈ ((P × P) / ~R )) → ⟨𝑢, 𝑡⟩ ∈ (P × P))
223, 20, 21sylancr 587 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨𝑢, 𝑡⟩ ∈ (P × P))
23 opelxp 5486 . . . 4 (⟨𝑢, 𝑡⟩ ∈ (P × P) ↔ (𝑢P𝑡P))
2422, 23sylib 219 . . 3 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (𝑢P𝑡P))
25 simprrr 778 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → 𝐵 = [⟨𝑔, ⟩] ~R )
2625, 19eqeltrrd 2886 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨𝑔, ⟩] ~R ∈ ((P × P) / ~R ))
27 ecelqsdm 8224 . . . . 5 ((dom ~R = (P × P) ∧ [⟨𝑔, ⟩] ~R ∈ ((P × P) / ~R )) → ⟨𝑔, ⟩ ∈ (P × P))
283, 26, 27sylancr 587 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨𝑔, ⟩ ∈ (P × P))
29 opelxp 5486 . . . 4 (⟨𝑔, ⟩ ∈ (P × P) ↔ (𝑔PP))
3028, 29sylib 219 . . 3 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (𝑔PP))
3124, 30jca 512 . 2 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((𝑢P𝑡P) ∧ (𝑔PP)))
324, 11eqtr3d 2835 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨𝑤, 𝑣⟩] ~R = [⟨𝑠, 𝑓⟩] ~R )
331a1i 11 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ~R Er (P × P))
3433, 8erth 8195 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (⟨𝑤, 𝑣⟩ ~R𝑠, 𝑓⟩ ↔ [⟨𝑤, 𝑣⟩] ~R = [⟨𝑠, 𝑓⟩] ~R ))
3532, 34mpbird 258 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨𝑤, 𝑣⟩ ~R𝑠, 𝑓⟩)
36 df-enr 10330 . . . . . 6 ~R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑦 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 +P 𝑑) = (𝑏 +P 𝑐)))}
3736ecopoveq 8255 . . . . 5 (((𝑤P𝑣P) ∧ (𝑠P𝑓P)) → (⟨𝑤, 𝑣⟩ ~R𝑠, 𝑓⟩ ↔ (𝑤 +P 𝑓) = (𝑣 +P 𝑠)))
3810, 16, 37syl2anc 584 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (⟨𝑤, 𝑣⟩ ~R𝑠, 𝑓⟩ ↔ (𝑤 +P 𝑓) = (𝑣 +P 𝑠)))
3935, 38mpbid 233 . . 3 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (𝑤 +P 𝑓) = (𝑣 +P 𝑠))
4018, 25eqtr3d 2835 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨𝑢, 𝑡⟩] ~R = [⟨𝑔, ⟩] ~R )
4133, 22erth 8195 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (⟨𝑢, 𝑡⟩ ~R𝑔, ⟩ ↔ [⟨𝑢, 𝑡⟩] ~R = [⟨𝑔, ⟩] ~R ))
4240, 41mpbird 258 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨𝑢, 𝑡⟩ ~R𝑔, ⟩)
4336ecopoveq 8255 . . . . 5 (((𝑢P𝑡P) ∧ (𝑔PP)) → (⟨𝑢, 𝑡⟩ ~R𝑔, ⟩ ↔ (𝑢 +P ) = (𝑡 +P 𝑔)))
4424, 30, 43syl2anc 584 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (⟨𝑢, 𝑡⟩ ~R𝑔, ⟩ ↔ (𝑢 +P ) = (𝑡 +P 𝑔)))
4542, 44mpbid 233 . . 3 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (𝑢 +P ) = (𝑡 +P 𝑔))
4639, 45jca 512 . 2 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔)))
4717, 31, 46jca31 515 1 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1525  wcel 2083  cop 4484   class class class wbr 4968   × cxp 5448  dom cdm 5450  (class class class)co 7023   Er wer 8143  [cec 8144   / cqs 8145  Pcnp 10134   +P cpp 10136   ~R cer 10139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-omul 7965  df-er 8146  df-ec 8148  df-qs 8152  df-ni 10147  df-pli 10148  df-mi 10149  df-lti 10150  df-plpq 10183  df-mpq 10184  df-ltpq 10185  df-enq 10186  df-nq 10187  df-erq 10188  df-plq 10189  df-mq 10190  df-1nq 10191  df-rq 10192  df-ltnq 10193  df-np 10256  df-plp 10258  df-ltp 10260  df-enr 10330
This theorem is referenced by:  addsrmo  10348  mulsrmo  10349
  Copyright terms: Public domain W3C validator