| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supexpr | Structured version Visualization version GIF version | ||
| Description: The union of a nonempty, bounded set of positive reals has a supremum. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| supexpr | ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → ∃𝑥 ∈ P (∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplem1pr 10981 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → ∪ 𝐴 ∈ P) | |
| 2 | ltrelpr 10927 | . . . . . . . . 9 ⊢ <P ⊆ (P × P) | |
| 3 | 2 | brel 5696 | . . . . . . . 8 ⊢ (𝑦<P 𝑥 → (𝑦 ∈ P ∧ 𝑥 ∈ P)) |
| 4 | 3 | simpld 494 | . . . . . . 7 ⊢ (𝑦<P 𝑥 → 𝑦 ∈ P) |
| 5 | 4 | ralimi 3066 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → ∀𝑦 ∈ 𝐴 𝑦 ∈ P) |
| 6 | dfss3 3932 | . . . . . 6 ⊢ (𝐴 ⊆ P ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ P) | |
| 7 | 5, 6 | sylibr 234 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → 𝐴 ⊆ P) |
| 8 | 7 | rexlimivw 3130 | . . . 4 ⊢ (∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → 𝐴 ⊆ P) |
| 9 | 8 | adantl 481 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → 𝐴 ⊆ P) |
| 10 | suplem2pr 10982 | . . . . . 6 ⊢ (𝐴 ⊆ P → ((𝑦 ∈ 𝐴 → ¬ ∪ 𝐴<P 𝑦) ∧ (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) | |
| 11 | 10 | simpld 494 | . . . . 5 ⊢ (𝐴 ⊆ P → (𝑦 ∈ 𝐴 → ¬ ∪ 𝐴<P 𝑦)) |
| 12 | 11 | ralrimiv 3124 | . . . 4 ⊢ (𝐴 ⊆ P → ∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦) |
| 13 | 10 | simprd 495 | . . . . 5 ⊢ (𝐴 ⊆ P → (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)) |
| 14 | 13 | ralrimivw 3129 | . . . 4 ⊢ (𝐴 ⊆ P → ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)) |
| 15 | 12, 14 | jca 511 | . . 3 ⊢ (𝐴 ⊆ P → (∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| 16 | 9, 15 | syl 17 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → (∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| 17 | breq1 5105 | . . . . . 6 ⊢ (𝑥 = ∪ 𝐴 → (𝑥<P 𝑦 ↔ ∪ 𝐴<P 𝑦)) | |
| 18 | 17 | notbid 318 | . . . . 5 ⊢ (𝑥 = ∪ 𝐴 → (¬ 𝑥<P 𝑦 ↔ ¬ ∪ 𝐴<P 𝑦)) |
| 19 | 18 | ralbidv 3156 | . . . 4 ⊢ (𝑥 = ∪ 𝐴 → (∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦)) |
| 20 | breq2 5106 | . . . . . 6 ⊢ (𝑥 = ∪ 𝐴 → (𝑦<P 𝑥 ↔ 𝑦<P ∪ 𝐴)) | |
| 21 | 20 | imbi1d 341 | . . . . 5 ⊢ (𝑥 = ∪ 𝐴 → ((𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧) ↔ (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| 22 | 21 | ralbidv 3156 | . . . 4 ⊢ (𝑥 = ∪ 𝐴 → (∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧) ↔ ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| 23 | 19, 22 | anbi12d 632 | . . 3 ⊢ (𝑥 = ∪ 𝐴 → ((∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)) ↔ (∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)))) |
| 24 | 23 | rspcev 3585 | . 2 ⊢ ((∪ 𝐴 ∈ P ∧ (∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) → ∃𝑥 ∈ P (∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| 25 | 1, 16, 24 | syl2anc 584 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → ∃𝑥 ∈ P (∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊆ wss 3911 ∅c0 4292 ∪ cuni 4867 class class class wbr 5102 Pcnp 10788 <P cltp 10792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-oadd 8415 df-omul 8416 df-er 8648 df-ni 10801 df-mi 10803 df-lti 10804 df-ltpq 10839 df-enq 10840 df-nq 10841 df-ltnq 10847 df-np 10910 df-ltp 10914 |
| This theorem is referenced by: supsrlem 11040 |
| Copyright terms: Public domain | W3C validator |