![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supexpr | Structured version Visualization version GIF version |
Description: The union of a nonempty, bounded set of positive reals has a supremum. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
supexpr | ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → ∃𝑥 ∈ P (∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suplem1pr 11089 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → ∪ 𝐴 ∈ P) | |
2 | ltrelpr 11035 | . . . . . . . . 9 ⊢ <P ⊆ (P × P) | |
3 | 2 | brel 5753 | . . . . . . . 8 ⊢ (𝑦<P 𝑥 → (𝑦 ∈ P ∧ 𝑥 ∈ P)) |
4 | 3 | simpld 494 | . . . . . . 7 ⊢ (𝑦<P 𝑥 → 𝑦 ∈ P) |
5 | 4 | ralimi 3080 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → ∀𝑦 ∈ 𝐴 𝑦 ∈ P) |
6 | dfss3 3983 | . . . . . 6 ⊢ (𝐴 ⊆ P ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ P) | |
7 | 5, 6 | sylibr 234 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → 𝐴 ⊆ P) |
8 | 7 | rexlimivw 3148 | . . . 4 ⊢ (∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → 𝐴 ⊆ P) |
9 | 8 | adantl 481 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → 𝐴 ⊆ P) |
10 | suplem2pr 11090 | . . . . . 6 ⊢ (𝐴 ⊆ P → ((𝑦 ∈ 𝐴 → ¬ ∪ 𝐴<P 𝑦) ∧ (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) | |
11 | 10 | simpld 494 | . . . . 5 ⊢ (𝐴 ⊆ P → (𝑦 ∈ 𝐴 → ¬ ∪ 𝐴<P 𝑦)) |
12 | 11 | ralrimiv 3142 | . . . 4 ⊢ (𝐴 ⊆ P → ∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦) |
13 | 10 | simprd 495 | . . . . 5 ⊢ (𝐴 ⊆ P → (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)) |
14 | 13 | ralrimivw 3147 | . . . 4 ⊢ (𝐴 ⊆ P → ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)) |
15 | 12, 14 | jca 511 | . . 3 ⊢ (𝐴 ⊆ P → (∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
16 | 9, 15 | syl 17 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → (∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
17 | breq1 5150 | . . . . . 6 ⊢ (𝑥 = ∪ 𝐴 → (𝑥<P 𝑦 ↔ ∪ 𝐴<P 𝑦)) | |
18 | 17 | notbid 318 | . . . . 5 ⊢ (𝑥 = ∪ 𝐴 → (¬ 𝑥<P 𝑦 ↔ ¬ ∪ 𝐴<P 𝑦)) |
19 | 18 | ralbidv 3175 | . . . 4 ⊢ (𝑥 = ∪ 𝐴 → (∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦)) |
20 | breq2 5151 | . . . . . 6 ⊢ (𝑥 = ∪ 𝐴 → (𝑦<P 𝑥 ↔ 𝑦<P ∪ 𝐴)) | |
21 | 20 | imbi1d 341 | . . . . 5 ⊢ (𝑥 = ∪ 𝐴 → ((𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧) ↔ (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
22 | 21 | ralbidv 3175 | . . . 4 ⊢ (𝑥 = ∪ 𝐴 → (∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧) ↔ ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
23 | 19, 22 | anbi12d 632 | . . 3 ⊢ (𝑥 = ∪ 𝐴 → ((∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)) ↔ (∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)))) |
24 | 23 | rspcev 3621 | . 2 ⊢ ((∪ 𝐴 ∈ P ∧ (∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) → ∃𝑥 ∈ P (∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
25 | 1, 16, 24 | syl2anc 584 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → ∃𝑥 ∈ P (∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∀wral 3058 ∃wrex 3067 ⊆ wss 3962 ∅c0 4338 ∪ cuni 4911 class class class wbr 5147 Pcnp 10896 <P cltp 10900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-oadd 8508 df-omul 8509 df-er 8743 df-ni 10909 df-mi 10911 df-lti 10912 df-ltpq 10947 df-enq 10948 df-nq 10949 df-ltnq 10955 df-np 11018 df-ltp 11022 |
This theorem is referenced by: supsrlem 11148 |
Copyright terms: Public domain | W3C validator |