MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supexpr Structured version   Visualization version   GIF version

Theorem supexpr 11007
Description: The union of a nonempty, bounded set of positive reals has a supremum. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
supexpr ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem supexpr
StepHypRef Expression
1 suplem1pr 11005 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → 𝐴P)
2 ltrelpr 10951 . . . . . . . . 9 <P ⊆ (P × P)
32brel 5703 . . . . . . . 8 (𝑦<P 𝑥 → (𝑦P𝑥P))
43simpld 494 . . . . . . 7 (𝑦<P 𝑥𝑦P)
54ralimi 3066 . . . . . 6 (∀𝑦𝐴 𝑦<P 𝑥 → ∀𝑦𝐴 𝑦P)
6 dfss3 3935 . . . . . 6 (𝐴P ↔ ∀𝑦𝐴 𝑦P)
75, 6sylibr 234 . . . . 5 (∀𝑦𝐴 𝑦<P 𝑥𝐴P)
87rexlimivw 3130 . . . 4 (∃𝑥P𝑦𝐴 𝑦<P 𝑥𝐴P)
98adantl 481 . . 3 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → 𝐴P)
10 suplem2pr 11006 . . . . . 6 (𝐴P → ((𝑦𝐴 → ¬ 𝐴<P 𝑦) ∧ (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
1110simpld 494 . . . . 5 (𝐴P → (𝑦𝐴 → ¬ 𝐴<P 𝑦))
1211ralrimiv 3124 . . . 4 (𝐴P → ∀𝑦𝐴 ¬ 𝐴<P 𝑦)
1310simprd 495 . . . . 5 (𝐴P → (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))
1413ralrimivw 3129 . . . 4 (𝐴P → ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))
1512, 14jca 511 . . 3 (𝐴P → (∀𝑦𝐴 ¬ 𝐴<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
169, 15syl 17 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → (∀𝑦𝐴 ¬ 𝐴<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
17 breq1 5110 . . . . . 6 (𝑥 = 𝐴 → (𝑥<P 𝑦 𝐴<P 𝑦))
1817notbid 318 . . . . 5 (𝑥 = 𝐴 → (¬ 𝑥<P 𝑦 ↔ ¬ 𝐴<P 𝑦))
1918ralbidv 3156 . . . 4 (𝑥 = 𝐴 → (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ↔ ∀𝑦𝐴 ¬ 𝐴<P 𝑦))
20 breq2 5111 . . . . . 6 (𝑥 = 𝐴 → (𝑦<P 𝑥𝑦<P 𝐴))
2120imbi1d 341 . . . . 5 (𝑥 = 𝐴 → ((𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧) ↔ (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
2221ralbidv 3156 . . . 4 (𝑥 = 𝐴 → (∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧) ↔ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
2319, 22anbi12d 632 . . 3 (𝑥 = 𝐴 → ((∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝐴<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))))
2423rspcev 3588 . 2 (( 𝐴P ∧ (∀𝑦𝐴 ¬ 𝐴<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))) → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
251, 16, 24syl2anc 584 1 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3914  c0 4296   cuni 4871   class class class wbr 5107  Pcnp 10812  <P cltp 10816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-oadd 8438  df-omul 8439  df-er 8671  df-ni 10825  df-mi 10827  df-lti 10828  df-ltpq 10863  df-enq 10864  df-nq 10865  df-ltnq 10871  df-np 10934  df-ltp 10938
This theorem is referenced by:  supsrlem  11064
  Copyright terms: Public domain W3C validator