MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supexpr Structured version   Visualization version   GIF version

Theorem supexpr 10741
Description: The union of a nonempty, bounded set of positive reals has a supremum. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
supexpr ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem supexpr
StepHypRef Expression
1 suplem1pr 10739 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → 𝐴P)
2 ltrelpr 10685 . . . . . . . . 9 <P ⊆ (P × P)
32brel 5643 . . . . . . . 8 (𝑦<P 𝑥 → (𝑦P𝑥P))
43simpld 494 . . . . . . 7 (𝑦<P 𝑥𝑦P)
54ralimi 3086 . . . . . 6 (∀𝑦𝐴 𝑦<P 𝑥 → ∀𝑦𝐴 𝑦P)
6 dfss3 3905 . . . . . 6 (𝐴P ↔ ∀𝑦𝐴 𝑦P)
75, 6sylibr 233 . . . . 5 (∀𝑦𝐴 𝑦<P 𝑥𝐴P)
87rexlimivw 3210 . . . 4 (∃𝑥P𝑦𝐴 𝑦<P 𝑥𝐴P)
98adantl 481 . . 3 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → 𝐴P)
10 suplem2pr 10740 . . . . . 6 (𝐴P → ((𝑦𝐴 → ¬ 𝐴<P 𝑦) ∧ (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
1110simpld 494 . . . . 5 (𝐴P → (𝑦𝐴 → ¬ 𝐴<P 𝑦))
1211ralrimiv 3106 . . . 4 (𝐴P → ∀𝑦𝐴 ¬ 𝐴<P 𝑦)
1310simprd 495 . . . . 5 (𝐴P → (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))
1413ralrimivw 3108 . . . 4 (𝐴P → ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))
1512, 14jca 511 . . 3 (𝐴P → (∀𝑦𝐴 ¬ 𝐴<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
169, 15syl 17 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → (∀𝑦𝐴 ¬ 𝐴<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
17 breq1 5073 . . . . . 6 (𝑥 = 𝐴 → (𝑥<P 𝑦 𝐴<P 𝑦))
1817notbid 317 . . . . 5 (𝑥 = 𝐴 → (¬ 𝑥<P 𝑦 ↔ ¬ 𝐴<P 𝑦))
1918ralbidv 3120 . . . 4 (𝑥 = 𝐴 → (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ↔ ∀𝑦𝐴 ¬ 𝐴<P 𝑦))
20 breq2 5074 . . . . . 6 (𝑥 = 𝐴 → (𝑦<P 𝑥𝑦<P 𝐴))
2120imbi1d 341 . . . . 5 (𝑥 = 𝐴 → ((𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧) ↔ (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
2221ralbidv 3120 . . . 4 (𝑥 = 𝐴 → (∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧) ↔ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
2319, 22anbi12d 630 . . 3 (𝑥 = 𝐴 → ((∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝐴<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))))
2423rspcev 3552 . 2 (( 𝐴P ∧ (∀𝑦𝐴 ¬ 𝐴<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))) → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
251, 16, 24syl2anc 583 1 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  wss 3883  c0 4253   cuni 4836   class class class wbr 5070  Pcnp 10546  <P cltp 10550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-oadd 8271  df-omul 8272  df-er 8456  df-ni 10559  df-mi 10561  df-lti 10562  df-ltpq 10597  df-enq 10598  df-nq 10599  df-ltnq 10605  df-np 10668  df-ltp 10672
This theorem is referenced by:  supsrlem  10798
  Copyright terms: Public domain W3C validator