| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supexpr | Structured version Visualization version GIF version | ||
| Description: The union of a nonempty, bounded set of positive reals has a supremum. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| supexpr | ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → ∃𝑥 ∈ P (∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplem1pr 11005 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → ∪ 𝐴 ∈ P) | |
| 2 | ltrelpr 10951 | . . . . . . . . 9 ⊢ <P ⊆ (P × P) | |
| 3 | 2 | brel 5703 | . . . . . . . 8 ⊢ (𝑦<P 𝑥 → (𝑦 ∈ P ∧ 𝑥 ∈ P)) |
| 4 | 3 | simpld 494 | . . . . . . 7 ⊢ (𝑦<P 𝑥 → 𝑦 ∈ P) |
| 5 | 4 | ralimi 3066 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → ∀𝑦 ∈ 𝐴 𝑦 ∈ P) |
| 6 | dfss3 3935 | . . . . . 6 ⊢ (𝐴 ⊆ P ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ P) | |
| 7 | 5, 6 | sylibr 234 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → 𝐴 ⊆ P) |
| 8 | 7 | rexlimivw 3130 | . . . 4 ⊢ (∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → 𝐴 ⊆ P) |
| 9 | 8 | adantl 481 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → 𝐴 ⊆ P) |
| 10 | suplem2pr 11006 | . . . . . 6 ⊢ (𝐴 ⊆ P → ((𝑦 ∈ 𝐴 → ¬ ∪ 𝐴<P 𝑦) ∧ (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) | |
| 11 | 10 | simpld 494 | . . . . 5 ⊢ (𝐴 ⊆ P → (𝑦 ∈ 𝐴 → ¬ ∪ 𝐴<P 𝑦)) |
| 12 | 11 | ralrimiv 3124 | . . . 4 ⊢ (𝐴 ⊆ P → ∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦) |
| 13 | 10 | simprd 495 | . . . . 5 ⊢ (𝐴 ⊆ P → (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)) |
| 14 | 13 | ralrimivw 3129 | . . . 4 ⊢ (𝐴 ⊆ P → ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)) |
| 15 | 12, 14 | jca 511 | . . 3 ⊢ (𝐴 ⊆ P → (∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| 16 | 9, 15 | syl 17 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → (∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| 17 | breq1 5110 | . . . . . 6 ⊢ (𝑥 = ∪ 𝐴 → (𝑥<P 𝑦 ↔ ∪ 𝐴<P 𝑦)) | |
| 18 | 17 | notbid 318 | . . . . 5 ⊢ (𝑥 = ∪ 𝐴 → (¬ 𝑥<P 𝑦 ↔ ¬ ∪ 𝐴<P 𝑦)) |
| 19 | 18 | ralbidv 3156 | . . . 4 ⊢ (𝑥 = ∪ 𝐴 → (∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦)) |
| 20 | breq2 5111 | . . . . . 6 ⊢ (𝑥 = ∪ 𝐴 → (𝑦<P 𝑥 ↔ 𝑦<P ∪ 𝐴)) | |
| 21 | 20 | imbi1d 341 | . . . . 5 ⊢ (𝑥 = ∪ 𝐴 → ((𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧) ↔ (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| 22 | 21 | ralbidv 3156 | . . . 4 ⊢ (𝑥 = ∪ 𝐴 → (∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧) ↔ ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| 23 | 19, 22 | anbi12d 632 | . . 3 ⊢ (𝑥 = ∪ 𝐴 → ((∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)) ↔ (∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)))) |
| 24 | 23 | rspcev 3588 | . 2 ⊢ ((∪ 𝐴 ∈ P ∧ (∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) → ∃𝑥 ∈ P (∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| 25 | 1, 16, 24 | syl2anc 584 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → ∃𝑥 ∈ P (∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 ∅c0 4296 ∪ cuni 4871 class class class wbr 5107 Pcnp 10812 <P cltp 10816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-oadd 8438 df-omul 8439 df-er 8671 df-ni 10825 df-mi 10827 df-lti 10828 df-ltpq 10863 df-enq 10864 df-nq 10865 df-ltnq 10871 df-np 10934 df-ltp 10938 |
| This theorem is referenced by: supsrlem 11064 |
| Copyright terms: Public domain | W3C validator |