MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supexpr Structured version   Visualization version   GIF version

Theorem supexpr 10668
Description: The union of a nonempty, bounded set of positive reals has a supremum. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
supexpr ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem supexpr
StepHypRef Expression
1 suplem1pr 10666 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → 𝐴P)
2 ltrelpr 10612 . . . . . . . . 9 <P ⊆ (P × P)
32brel 5614 . . . . . . . 8 (𝑦<P 𝑥 → (𝑦P𝑥P))
43simpld 498 . . . . . . 7 (𝑦<P 𝑥𝑦P)
54ralimi 3083 . . . . . 6 (∀𝑦𝐴 𝑦<P 𝑥 → ∀𝑦𝐴 𝑦P)
6 dfss3 3888 . . . . . 6 (𝐴P ↔ ∀𝑦𝐴 𝑦P)
75, 6sylibr 237 . . . . 5 (∀𝑦𝐴 𝑦<P 𝑥𝐴P)
87rexlimivw 3201 . . . 4 (∃𝑥P𝑦𝐴 𝑦<P 𝑥𝐴P)
98adantl 485 . . 3 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → 𝐴P)
10 suplem2pr 10667 . . . . . 6 (𝐴P → ((𝑦𝐴 → ¬ 𝐴<P 𝑦) ∧ (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
1110simpld 498 . . . . 5 (𝐴P → (𝑦𝐴 → ¬ 𝐴<P 𝑦))
1211ralrimiv 3104 . . . 4 (𝐴P → ∀𝑦𝐴 ¬ 𝐴<P 𝑦)
1310simprd 499 . . . . 5 (𝐴P → (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))
1413ralrimivw 3106 . . . 4 (𝐴P → ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))
1512, 14jca 515 . . 3 (𝐴P → (∀𝑦𝐴 ¬ 𝐴<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
169, 15syl 17 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → (∀𝑦𝐴 ¬ 𝐴<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
17 breq1 5056 . . . . . 6 (𝑥 = 𝐴 → (𝑥<P 𝑦 𝐴<P 𝑦))
1817notbid 321 . . . . 5 (𝑥 = 𝐴 → (¬ 𝑥<P 𝑦 ↔ ¬ 𝐴<P 𝑦))
1918ralbidv 3118 . . . 4 (𝑥 = 𝐴 → (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ↔ ∀𝑦𝐴 ¬ 𝐴<P 𝑦))
20 breq2 5057 . . . . . 6 (𝑥 = 𝐴 → (𝑦<P 𝑥𝑦<P 𝐴))
2120imbi1d 345 . . . . 5 (𝑥 = 𝐴 → ((𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧) ↔ (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
2221ralbidv 3118 . . . 4 (𝑥 = 𝐴 → (∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧) ↔ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
2319, 22anbi12d 634 . . 3 (𝑥 = 𝐴 → ((∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝐴<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))))
2423rspcev 3537 . 2 (( 𝐴P ∧ (∀𝑦𝐴 ¬ 𝐴<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))) → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
251, 16, 24syl2anc 587 1 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  wss 3866  c0 4237   cuni 4819   class class class wbr 5053  Pcnp 10473  <P cltp 10477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-oadd 8206  df-omul 8207  df-er 8391  df-ni 10486  df-mi 10488  df-lti 10489  df-ltpq 10524  df-enq 10525  df-nq 10526  df-ltnq 10532  df-np 10595  df-ltp 10599
This theorem is referenced by:  supsrlem  10725
  Copyright terms: Public domain W3C validator