MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supexpr Structured version   Visualization version   GIF version

Theorem supexpr 11094
Description: The union of a nonempty, bounded set of positive reals has a supremum. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
supexpr ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem supexpr
StepHypRef Expression
1 suplem1pr 11092 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → 𝐴P)
2 ltrelpr 11038 . . . . . . . . 9 <P ⊆ (P × P)
32brel 5750 . . . . . . . 8 (𝑦<P 𝑥 → (𝑦P𝑥P))
43simpld 494 . . . . . . 7 (𝑦<P 𝑥𝑦P)
54ralimi 3083 . . . . . 6 (∀𝑦𝐴 𝑦<P 𝑥 → ∀𝑦𝐴 𝑦P)
6 dfss3 3972 . . . . . 6 (𝐴P ↔ ∀𝑦𝐴 𝑦P)
75, 6sylibr 234 . . . . 5 (∀𝑦𝐴 𝑦<P 𝑥𝐴P)
87rexlimivw 3151 . . . 4 (∃𝑥P𝑦𝐴 𝑦<P 𝑥𝐴P)
98adantl 481 . . 3 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → 𝐴P)
10 suplem2pr 11093 . . . . . 6 (𝐴P → ((𝑦𝐴 → ¬ 𝐴<P 𝑦) ∧ (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
1110simpld 494 . . . . 5 (𝐴P → (𝑦𝐴 → ¬ 𝐴<P 𝑦))
1211ralrimiv 3145 . . . 4 (𝐴P → ∀𝑦𝐴 ¬ 𝐴<P 𝑦)
1310simprd 495 . . . . 5 (𝐴P → (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))
1413ralrimivw 3150 . . . 4 (𝐴P → ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))
1512, 14jca 511 . . 3 (𝐴P → (∀𝑦𝐴 ¬ 𝐴<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
169, 15syl 17 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → (∀𝑦𝐴 ¬ 𝐴<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
17 breq1 5146 . . . . . 6 (𝑥 = 𝐴 → (𝑥<P 𝑦 𝐴<P 𝑦))
1817notbid 318 . . . . 5 (𝑥 = 𝐴 → (¬ 𝑥<P 𝑦 ↔ ¬ 𝐴<P 𝑦))
1918ralbidv 3178 . . . 4 (𝑥 = 𝐴 → (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ↔ ∀𝑦𝐴 ¬ 𝐴<P 𝑦))
20 breq2 5147 . . . . . 6 (𝑥 = 𝐴 → (𝑦<P 𝑥𝑦<P 𝐴))
2120imbi1d 341 . . . . 5 (𝑥 = 𝐴 → ((𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧) ↔ (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
2221ralbidv 3178 . . . 4 (𝑥 = 𝐴 → (∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧) ↔ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
2319, 22anbi12d 632 . . 3 (𝑥 = 𝐴 → ((∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝐴<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))))
2423rspcev 3622 . 2 (( 𝐴P ∧ (∀𝑦𝐴 ¬ 𝐴<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))) → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
251, 16, 24syl2anc 584 1 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  wss 3951  c0 4333   cuni 4907   class class class wbr 5143  Pcnp 10899  <P cltp 10903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-oadd 8510  df-omul 8511  df-er 8745  df-ni 10912  df-mi 10914  df-lti 10915  df-ltpq 10950  df-enq 10951  df-nq 10952  df-ltnq 10958  df-np 11021  df-ltp 11025
This theorem is referenced by:  supsrlem  11151
  Copyright terms: Public domain W3C validator