| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supexpr | Structured version Visualization version GIF version | ||
| Description: The union of a nonempty, bounded set of positive reals has a supremum. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| supexpr | ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → ∃𝑥 ∈ P (∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplem1pr 11092 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → ∪ 𝐴 ∈ P) | |
| 2 | ltrelpr 11038 | . . . . . . . . 9 ⊢ <P ⊆ (P × P) | |
| 3 | 2 | brel 5750 | . . . . . . . 8 ⊢ (𝑦<P 𝑥 → (𝑦 ∈ P ∧ 𝑥 ∈ P)) |
| 4 | 3 | simpld 494 | . . . . . . 7 ⊢ (𝑦<P 𝑥 → 𝑦 ∈ P) |
| 5 | 4 | ralimi 3083 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → ∀𝑦 ∈ 𝐴 𝑦 ∈ P) |
| 6 | dfss3 3972 | . . . . . 6 ⊢ (𝐴 ⊆ P ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ P) | |
| 7 | 5, 6 | sylibr 234 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → 𝐴 ⊆ P) |
| 8 | 7 | rexlimivw 3151 | . . . 4 ⊢ (∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → 𝐴 ⊆ P) |
| 9 | 8 | adantl 481 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → 𝐴 ⊆ P) |
| 10 | suplem2pr 11093 | . . . . . 6 ⊢ (𝐴 ⊆ P → ((𝑦 ∈ 𝐴 → ¬ ∪ 𝐴<P 𝑦) ∧ (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) | |
| 11 | 10 | simpld 494 | . . . . 5 ⊢ (𝐴 ⊆ P → (𝑦 ∈ 𝐴 → ¬ ∪ 𝐴<P 𝑦)) |
| 12 | 11 | ralrimiv 3145 | . . . 4 ⊢ (𝐴 ⊆ P → ∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦) |
| 13 | 10 | simprd 495 | . . . . 5 ⊢ (𝐴 ⊆ P → (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)) |
| 14 | 13 | ralrimivw 3150 | . . . 4 ⊢ (𝐴 ⊆ P → ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)) |
| 15 | 12, 14 | jca 511 | . . 3 ⊢ (𝐴 ⊆ P → (∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| 16 | 9, 15 | syl 17 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → (∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| 17 | breq1 5146 | . . . . . 6 ⊢ (𝑥 = ∪ 𝐴 → (𝑥<P 𝑦 ↔ ∪ 𝐴<P 𝑦)) | |
| 18 | 17 | notbid 318 | . . . . 5 ⊢ (𝑥 = ∪ 𝐴 → (¬ 𝑥<P 𝑦 ↔ ¬ ∪ 𝐴<P 𝑦)) |
| 19 | 18 | ralbidv 3178 | . . . 4 ⊢ (𝑥 = ∪ 𝐴 → (∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦)) |
| 20 | breq2 5147 | . . . . . 6 ⊢ (𝑥 = ∪ 𝐴 → (𝑦<P 𝑥 ↔ 𝑦<P ∪ 𝐴)) | |
| 21 | 20 | imbi1d 341 | . . . . 5 ⊢ (𝑥 = ∪ 𝐴 → ((𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧) ↔ (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| 22 | 21 | ralbidv 3178 | . . . 4 ⊢ (𝑥 = ∪ 𝐴 → (∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧) ↔ ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| 23 | 19, 22 | anbi12d 632 | . . 3 ⊢ (𝑥 = ∪ 𝐴 → ((∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)) ↔ (∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)))) |
| 24 | 23 | rspcev 3622 | . 2 ⊢ ((∪ 𝐴 ∈ P ∧ (∀𝑦 ∈ 𝐴 ¬ ∪ 𝐴<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P ∪ 𝐴 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) → ∃𝑥 ∈ P (∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| 25 | 1, 16, 24 | syl2anc 584 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → ∃𝑥 ∈ P (∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ⊆ wss 3951 ∅c0 4333 ∪ cuni 4907 class class class wbr 5143 Pcnp 10899 <P cltp 10903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-oadd 8510 df-omul 8511 df-er 8745 df-ni 10912 df-mi 10914 df-lti 10915 df-ltpq 10950 df-enq 10951 df-nq 10952 df-ltnq 10958 df-np 11021 df-ltp 11025 |
| This theorem is referenced by: supsrlem 11151 |
| Copyright terms: Public domain | W3C validator |