| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enrex | Structured version Visualization version GIF version | ||
| Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| enrex | ⊢ ~R ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | npex 10998 | . . . 4 ⊢ P ∈ V | |
| 2 | 1, 1 | xpex 7745 | . . 3 ⊢ (P × P) ∈ V |
| 3 | 2, 2 | xpex 7745 | . 2 ⊢ ((P × P) × (P × P)) ∈ V |
| 4 | df-enr 11067 | . . 3 ⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} | |
| 5 | opabssxp 5747 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} ⊆ ((P × P) × (P × P)) | |
| 6 | 4, 5 | eqsstri 4005 | . 2 ⊢ ~R ⊆ ((P × P) × (P × P)) |
| 7 | 3, 6 | ssexi 5292 | 1 ⊢ ~R ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 〈cop 4607 {copab 5181 × cxp 5652 (class class class)co 7403 Pcnp 10871 +P cpp 10873 ~R cer 10876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-om 7860 df-ni 10884 df-nq 10924 df-np 10993 df-enr 11067 |
| This theorem is referenced by: addsrpr 11087 mulsrpr 11088 ltsrpr 11089 0r 11092 1sr 11093 m1r 11094 addclsr 11095 mulclsr 11096 recexsrlem 11115 |
| Copyright terms: Public domain | W3C validator |