Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  enrex Structured version   Visualization version   GIF version

Theorem enrex 10466
 Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.)
Assertion
Ref Expression
enrex ~R ∈ V

Proof of Theorem enrex
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 npex 10385 . . . 4 P ∈ V
21, 1xpex 7451 . . 3 (P × P) ∈ V
32, 2xpex 7451 . 2 ((P × P) × (P × P)) ∈ V
4 df-enr 10454 . . 3 ~R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))}
5 opabssxp 5616 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} ⊆ ((P × P) × (P × P))
64, 5eqsstri 3977 . 2 ~R ⊆ ((P × P) × (P × P))
73, 6ssexi 5199 1 ~R ∈ V
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2115  Vcvv 3471  ⟨cop 4546  {copab 5101   × cxp 5526  (class class class)co 7130  Pcnp 10258   +P cpp 10260   ~R cer 10263 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-tr 5146  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-om 7556  df-ni 10271  df-nq 10311  df-np 10380  df-enr 10454 This theorem is referenced by:  addsrpr  10474  mulsrpr  10475  ltsrpr  10476  0r  10479  1sr  10480  m1r  10481  addclsr  10482  mulclsr  10483  recexsrlem  10502
 Copyright terms: Public domain W3C validator