![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enrex | Structured version Visualization version GIF version |
Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
enrex | ⊢ ~R ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | npex 11055 | . . . 4 ⊢ P ∈ V | |
2 | 1, 1 | xpex 7788 | . . 3 ⊢ (P × P) ∈ V |
3 | 2, 2 | xpex 7788 | . 2 ⊢ ((P × P) × (P × P)) ∈ V |
4 | df-enr 11124 | . . 3 ⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} | |
5 | opabssxp 5792 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} ⊆ ((P × P) × (P × P)) | |
6 | 4, 5 | eqsstri 4043 | . 2 ⊢ ~R ⊆ ((P × P) × (P × P)) |
7 | 3, 6 | ssexi 5340 | 1 ⊢ ~R ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 〈cop 4654 {copab 5228 × cxp 5698 (class class class)co 7448 Pcnp 10928 +P cpp 10930 ~R cer 10933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-om 7904 df-ni 10941 df-nq 10981 df-np 11050 df-enr 11124 |
This theorem is referenced by: addsrpr 11144 mulsrpr 11145 ltsrpr 11146 0r 11149 1sr 11150 m1r 11151 addclsr 11152 mulclsr 11153 recexsrlem 11172 |
Copyright terms: Public domain | W3C validator |