| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enrex | Structured version Visualization version GIF version | ||
| Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| enrex | ⊢ ~R ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | npex 10887 | . . . 4 ⊢ P ∈ V | |
| 2 | 1, 1 | xpex 7695 | . . 3 ⊢ (P × P) ∈ V |
| 3 | 2, 2 | xpex 7695 | . 2 ⊢ ((P × P) × (P × P)) ∈ V |
| 4 | df-enr 10956 | . . 3 ⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} | |
| 5 | opabssxp 5713 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} ⊆ ((P × P) × (P × P)) | |
| 6 | 4, 5 | eqsstri 3978 | . 2 ⊢ ~R ⊆ ((P × P) × (P × P)) |
| 7 | 3, 6 | ssexi 5264 | 1 ⊢ ~R ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 Vcvv 3438 〈cop 4583 {copab 5157 × cxp 5619 (class class class)co 7355 Pcnp 10760 +P cpp 10762 ~R cer 10765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9541 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-om 7806 df-ni 10773 df-nq 10813 df-np 10882 df-enr 10956 |
| This theorem is referenced by: addsrpr 10976 mulsrpr 10977 ltsrpr 10978 0r 10981 1sr 10982 m1r 10983 addclsr 10984 mulclsr 10985 recexsrlem 11004 |
| Copyright terms: Public domain | W3C validator |