| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enrex | Structured version Visualization version GIF version | ||
| Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| enrex | ⊢ ~R ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | npex 10946 | . . . 4 ⊢ P ∈ V | |
| 2 | 1, 1 | xpex 7732 | . . 3 ⊢ (P × P) ∈ V |
| 3 | 2, 2 | xpex 7732 | . 2 ⊢ ((P × P) × (P × P)) ∈ V |
| 4 | df-enr 11015 | . . 3 ⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} | |
| 5 | opabssxp 5734 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} ⊆ ((P × P) × (P × P)) | |
| 6 | 4, 5 | eqsstri 3996 | . 2 ⊢ ~R ⊆ ((P × P) × (P × P)) |
| 7 | 3, 6 | ssexi 5280 | 1 ⊢ ~R ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 〈cop 4598 {copab 5172 × cxp 5639 (class class class)co 7390 Pcnp 10819 +P cpp 10821 ~R cer 10824 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-om 7846 df-ni 10832 df-nq 10872 df-np 10941 df-enr 11015 |
| This theorem is referenced by: addsrpr 11035 mulsrpr 11036 ltsrpr 11037 0r 11040 1sr 11041 m1r 11042 addclsr 11043 mulclsr 11044 recexsrlem 11063 |
| Copyright terms: Public domain | W3C validator |