MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enrex Structured version   Visualization version   GIF version

Theorem enrex 10980
Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.)
Assertion
Ref Expression
enrex ~R ∈ V

Proof of Theorem enrex
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 npex 10899 . . . 4 P ∈ V
21, 1xpex 7693 . . 3 (P × P) ∈ V
32, 2xpex 7693 . 2 ((P × P) × (P × P)) ∈ V
4 df-enr 10968 . . 3 ~R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))}
5 opabssxp 5715 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} ⊆ ((P × P) × (P × P))
64, 5eqsstri 3984 . 2 ~R ⊆ ((P × P) × (P × P))
73, 6ssexi 5264 1 ~R ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3438  cop 4585  {copab 5157   × cxp 5621  (class class class)co 7353  Pcnp 10772   +P cpp 10774   ~R cer 10777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-om 7807  df-ni 10785  df-nq 10825  df-np 10894  df-enr 10968
This theorem is referenced by:  addsrpr  10988  mulsrpr  10989  ltsrpr  10990  0r  10993  1sr  10994  m1r  10995  addclsr  10996  mulclsr  10997  recexsrlem  11016
  Copyright terms: Public domain W3C validator