| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enrex | Structured version Visualization version GIF version | ||
| Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| enrex | ⊢ ~R ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | npex 10869 | . . . 4 ⊢ P ∈ V | |
| 2 | 1, 1 | xpex 7681 | . . 3 ⊢ (P × P) ∈ V |
| 3 | 2, 2 | xpex 7681 | . 2 ⊢ ((P × P) × (P × P)) ∈ V |
| 4 | df-enr 10938 | . . 3 ⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} | |
| 5 | opabssxp 5706 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} ⊆ ((P × P) × (P × P)) | |
| 6 | 4, 5 | eqsstri 3979 | . 2 ⊢ ~R ⊆ ((P × P) × (P × P)) |
| 7 | 3, 6 | ssexi 5258 | 1 ⊢ ~R ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2110 Vcvv 3434 〈cop 4580 {copab 5151 × cxp 5612 (class class class)co 7341 Pcnp 10742 +P cpp 10744 ~R cer 10747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-om 7792 df-ni 10755 df-nq 10795 df-np 10864 df-enr 10938 |
| This theorem is referenced by: addsrpr 10958 mulsrpr 10959 ltsrpr 10960 0r 10963 1sr 10964 m1r 10965 addclsr 10966 mulclsr 10967 recexsrlem 10986 |
| Copyright terms: Public domain | W3C validator |