![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enrex | Structured version Visualization version GIF version |
Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
enrex | ⊢ ~R ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | npex 11023 | . . . 4 ⊢ P ∈ V | |
2 | 1, 1 | xpex 7771 | . . 3 ⊢ (P × P) ∈ V |
3 | 2, 2 | xpex 7771 | . 2 ⊢ ((P × P) × (P × P)) ∈ V |
4 | df-enr 11092 | . . 3 ⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} | |
5 | opabssxp 5780 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} ⊆ ((P × P) × (P × P)) | |
6 | 4, 5 | eqsstri 4029 | . 2 ⊢ ~R ⊆ ((P × P) × (P × P)) |
7 | 3, 6 | ssexi 5327 | 1 ⊢ ~R ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1536 ∃wex 1775 ∈ wcel 2105 Vcvv 3477 〈cop 4636 {copab 5209 × cxp 5686 (class class class)co 7430 Pcnp 10896 +P cpp 10898 ~R cer 10901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-om 7887 df-ni 10909 df-nq 10949 df-np 11018 df-enr 11092 |
This theorem is referenced by: addsrpr 11112 mulsrpr 11113 ltsrpr 11114 0r 11117 1sr 11118 m1r 11119 addclsr 11120 mulclsr 11121 recexsrlem 11140 |
Copyright terms: Public domain | W3C validator |