Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > enrer | Structured version Visualization version GIF version |
Description: The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
enrer | ⊢ ~R Er (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-enr 10904 | . 2 ⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} | |
2 | addcompr 10870 | . 2 ⊢ (𝑥 +P 𝑦) = (𝑦 +P 𝑥) | |
3 | addclpr 10867 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 +P 𝑦) ∈ P) | |
4 | addasspr 10871 | . 2 ⊢ ((𝑥 +P 𝑦) +P 𝑧) = (𝑥 +P (𝑦 +P 𝑧)) | |
5 | addcanpr 10895 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝑥 +P 𝑦) = (𝑥 +P 𝑧) → 𝑦 = 𝑧)) | |
6 | 1, 2, 3, 4, 5 | ecopover 8673 | 1 ⊢ ~R Er (P × P) |
Colors of variables: wff setvar class |
Syntax hints: × cxp 5612 Er wer 8558 Pcnp 10708 +P cpp 10710 ~R cer 10713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-inf2 9490 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-oadd 8363 df-omul 8364 df-er 8561 df-ni 10721 df-pli 10722 df-mi 10723 df-lti 10724 df-plpq 10757 df-mpq 10758 df-ltpq 10759 df-enq 10760 df-nq 10761 df-erq 10762 df-plq 10763 df-mq 10764 df-1nq 10765 df-rq 10766 df-ltnq 10767 df-np 10830 df-plp 10832 df-ltp 10834 df-enr 10904 |
This theorem is referenced by: nrex1 10913 enreceq 10915 prsrlem1 10921 addsrmo 10922 mulsrmo 10923 ltsrpr 10926 0nsr 10928 wuncn 11019 |
Copyright terms: Public domain | W3C validator |