![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enrer | Structured version Visualization version GIF version |
Description: The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
enrer | ⊢ ~R Er (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-enr 11046 | . 2 ⊢ ~R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} | |
2 | addcompr 11012 | . 2 ⊢ (𝑥 +P 𝑦) = (𝑦 +P 𝑥) | |
3 | addclpr 11009 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 +P 𝑦) ∈ P) | |
4 | addasspr 11013 | . 2 ⊢ ((𝑥 +P 𝑦) +P 𝑧) = (𝑥 +P (𝑦 +P 𝑧)) | |
5 | addcanpr 11037 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝑥 +P 𝑦) = (𝑥 +P 𝑧) → 𝑦 = 𝑧)) | |
6 | 1, 2, 3, 4, 5 | ecopover 8811 | 1 ⊢ ~R Er (P × P) |
Colors of variables: wff setvar class |
Syntax hints: × cxp 5673 Er wer 8696 Pcnp 10850 +P cpp 10852 ~R cer 10855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-omul 8467 df-er 8699 df-ni 10863 df-pli 10864 df-mi 10865 df-lti 10866 df-plpq 10899 df-mpq 10900 df-ltpq 10901 df-enq 10902 df-nq 10903 df-erq 10904 df-plq 10905 df-mq 10906 df-1nq 10907 df-rq 10908 df-ltnq 10909 df-np 10972 df-plp 10974 df-ltp 10976 df-enr 11046 |
This theorem is referenced by: nrex1 11055 enreceq 11057 prsrlem1 11063 addsrmo 11064 mulsrmo 11065 ltsrpr 11068 0nsr 11070 wuncn 11161 |
Copyright terms: Public domain | W3C validator |