![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enrer | Structured version Visualization version GIF version |
Description: The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
enrer | ⊢ ~R Er (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-enr 11092 | . 2 ⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} | |
2 | addcompr 11058 | . 2 ⊢ (𝑥 +P 𝑦) = (𝑦 +P 𝑥) | |
3 | addclpr 11055 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 +P 𝑦) ∈ P) | |
4 | addasspr 11059 | . 2 ⊢ ((𝑥 +P 𝑦) +P 𝑧) = (𝑥 +P (𝑦 +P 𝑧)) | |
5 | addcanpr 11083 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝑥 +P 𝑦) = (𝑥 +P 𝑧) → 𝑦 = 𝑧)) | |
6 | 1, 2, 3, 4, 5 | ecopover 8859 | 1 ⊢ ~R Er (P × P) |
Colors of variables: wff setvar class |
Syntax hints: × cxp 5686 Er wer 8740 Pcnp 10896 +P cpp 10898 ~R cer 10901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-oadd 8508 df-omul 8509 df-er 8743 df-ni 10909 df-pli 10910 df-mi 10911 df-lti 10912 df-plpq 10945 df-mpq 10946 df-ltpq 10947 df-enq 10948 df-nq 10949 df-erq 10950 df-plq 10951 df-mq 10952 df-1nq 10953 df-rq 10954 df-ltnq 10955 df-np 11018 df-plp 11020 df-ltp 11022 df-enr 11092 |
This theorem is referenced by: nrex1 11101 enreceq 11103 prsrlem1 11109 addsrmo 11110 mulsrmo 11111 ltsrpr 11114 0nsr 11116 wuncn 11207 |
Copyright terms: Public domain | W3C validator |