MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-eprel Structured version   Visualization version   GIF version

Definition df-eprel 5486
Description: Define the membership relation (also called "epsilon relation" since it is sometimes denoted by the lowercase Greek letter "epsilon"). Similar to Definition 6.22 of [TakeutiZaring] p. 30. The membership relation and the membership predicate agree, that is, (𝐴 E 𝐵𝐴𝐵), when 𝐵 is a set (see epelg 5487). Thus, 5 E {1, 5} (ex-eprel 28698). (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
df-eprel E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-eprel
StepHypRef Expression
1 cep 5485 . 2 class E
2 vx . . . 4 setvar 𝑥
3 vy . . . 4 setvar 𝑦
42, 3wel 2109 . . 3 wff 𝑥𝑦
54, 2, 3copab 5132 . 2 class {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
61, 5wceq 1539 1 wff E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
Colors of variables: wff setvar class
This definition is referenced by:  epelg  5487  rele  5726  epinid0  9289  cnvepnep  9296  bj-epelg  35166  dfnelbr2  44652
  Copyright terms: Public domain W3C validator